We describe a 3/2approximation algorithm, \lse, for computing a bedgecover of minimum weight in a graph with weights on the edges. The bedgecover problem is a generalization of the betterknown Edge Cover problem in graphs, where the objective is to choose a subset C of edges in the graph such that at least a specified number b(v) of edges in C are incident on each vertex v. In the weighted bedgecover problem, we minimize the sum of the weights of the edges in C. We prove that the Locally Subdominant edge (LSE) algorithm computes the same bedge cover as the one obtained by the Greedy algorithm for the problem. However, the Greedy algorithm requires edges to be sorted by their effective weights, and these weights need to be updated after each iteration. These requirements make the Greedy algorithm sequential and impractical for massive graphs. The LSE algorithm avoids the sorting step, and is amenable for parallelization. We implement the algorithm on a serial machine and compare its performance against a collection of approximation algorithms for the bedge cover problem. Our results show that the algorithm is 3 to 5 times faster than the Greedy algorithm on a serial processor. Themore »
Approximation algorithms in combinatorial scientific computing
We survey recent work on approximation algorithms for computing degreeconstrained subgraphs in graphs and their applications in combinatorial scientific computing. The problems we consider include maximization versions of cardinality matching, edgeweighted matching, vertexweighted matching and edgeweighted $b$ matching, and minimization versions of weighted edge cover and $b$ edge cover. Exact algorithms for these problems are impractical for massive graphs with several millions of edges. For each problem we discuss theoretical foundations, the design of several linear or nearlinear time approximation algorithms, their implementations on serial and parallel computers, and applications. Our focus is on practical algorithms that yield good performance on modern computer architectures with multiple threads and interconnected processors. We also include information about the software available for these problems.
 Award ID(s):
 1637534
 Publication Date:
 NSFPAR ID:
 10109987
 Journal Name:
 Acta Numerica
 Volume:
 28
 Page Range or eLocationID:
 541 to 633
 ISSN:
 09624929
 Sponsoring Org:
 National Science Foundation
More Like this


The 2Wasserstein distance (or RMS distance) is a useful measure of similarity between probability distributions with exciting applications in machine learning. For discrete distributions, the problem of computing this distance can be expressed in terms of finding a minimumcost perfect matching on a complete bipartite graph given by two multisets of points A, B ⊂ ℝ2, with A = B = n, where the ground distance between any two points is the squared Euclidean distance between them. Although there is a nearlinear time relative ∊approximation algorithm for the case where the ground distance is Euclidean (Sharathkumar and Agarwal, JACM 2020), all existing relative ∊approximation algorithms for the RMS distance take Ω(n3/2) time. This is primarily because, unlike Euclidean distance, squared Euclidean distance is not a metric. In this paper, for the RMS distance, we present a new ∊approximation algorithm that runs in O(n^5/4 poly{log n, 1/∊}) time. Our algorithm is inspired by a recent approach for finding a minimumcost perfect matching in bipartite planar graphs (Asathulla et al, TALG 2020). Their algorithm depends heavily on the existence of sublinear sized vertex separators as well as shortest path data structures that require planarity. Surprisingly, we are able to design a similarmore »

We study the classic Maximum Independent Set problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of Independent Set is γstable if it has a unique optimal solution that remains the unique optimal solution under multiplicative perturbations of the weights by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal solution exactly. In this work, we solve stable instances of Independent Set on several classes of graphs: we improve upon previous results by solving \tilde{O}(∆/sqrt(log ∆))stable instances on graphs of maximum degree ∆, (k − 1)stable instances on kcolorable graphs and (1 + ε)stable instances on planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the SheraliAdams hierarchy. For general graphs, we give an algorithm for (εn)stable instances, for any fixed ε > 0, and lower bounds based on the planted clique conjecture. As a byproduct of our techniques, we give algorithms as well as lower bounds for stable instances of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to Vertex Cover. Furthermore, we prove a general structural result showing that themore »

We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the bedgecover problem. A bedgecover of minimum weight in a graph is a subset $C$ of its edges such that at least a specified number $b(v)$ of edges in $C$ is incident on each vertex $v$, and the sum of the edge weights in $C$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$approximation guarantees in the worstcase for this problem, but these algorithms have limited parallelism. Hence we design two new $2$approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a bedgecover to that of finding a b'matching, by exploiting the relationship between these subgraphs in an approximation context. The LSENW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSENW algorithms compute the same bedgecover with at most twice the weight of the minimum weight edge cover. In practice, the $2$approximation and $3/2$approximation algorithms compute edge covers of weight within $10\%$ the optimal. We implement three of themore »

Mikołaj Boja´nczyk, Emanuela Merelli (Ed.)We initiate a systematic study of algorithms that are both differentiallyprivate and run in sublinear time for several problems in which the goal is to estimate natural graph parameters. Our main result is a differentiallyprivate $(1+\rho)$approximation algorithm for the problem of computing the average degree of a graph, for every $\rho>0$. The running time of the algorithm is roughly the same (for sparse graphs) as its nonprivate version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the first differentiallyprivate sublineartime approximation algorithms for the maximum matching size and the minimum vertex cover size of a graph. An overarching technique we employ is the notion of \emph{coupled global sensitivity} of randomized algorithms. Related variants of this notion of sensitivity have been used in the literature in adhoc ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation algorithms.