skip to main content


Title: Approximation algorithms in combinatorial scientific computing
We survey recent work on approximation algorithms for computing degree-constrained subgraphs in graphs and their applications in combinatorial scientific computing. The problems we consider include maximization versions of cardinality matching, edge-weighted matching, vertex-weighted matching and edge-weighted $b$ -matching, and minimization versions of weighted edge cover and $b$ -edge cover. Exact algorithms for these problems are impractical for massive graphs with several millions of edges. For each problem we discuss theoretical foundations, the design of several linear or near-linear time approximation algorithms, their implementations on serial and parallel computers, and applications. Our focus is on practical algorithms that yield good performance on modern computer architectures with multiple threads and interconnected processors. We also include information about the software available for these problems.  more » « less
Award ID(s):
1637534
PAR ID:
10109987
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Acta Numerica
Volume:
28
ISSN:
0962-4929
Page Range / eLocation ID:
541 to 633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a 3/2-approximation algorithm, \lse, for computing a b-edgecover of minimum weight in a graph with weights on the edges. The b-edgecover problem is a generalization of the better-known Edge Cover problem in graphs, where the objective is to choose a subset C of edges in the graph such that at least a specified number b(v) of edges in C are incident on each vertex v. In the weighted b-edgecover problem, we minimize the sum of the weights of the edges in C. We prove that the Locally Subdominant edge (LSE) algorithm computes the same b-edge cover as the one obtained by the Greedy algorithm for the problem. However, the Greedy algorithm requires edges to be sorted by their effective weights, and these weights need to be updated after each iteration. These requirements make the Greedy algorithm sequential and impractical for massive graphs. The LSE algorithm avoids the sorting step, and is amenable for parallelization. We implement the algorithm on a serial machine and compare its performance against a collection of approximation algorithms for the b-edge cover problem. Our results show that the algorithm is 3 to 5 times faster than the Greedy algorithm on a serial processor. The approximate edge covers obtained by the LSE algorithm have weights greater by at most 17% of the optimal weight for problems where we could compute the latter. We also investigate the relationship between the b-edge cover and the b-matching problems, show that the latter has a faster implementation since edge weights are static in this algorithm, and obtain a heuristic solution for the former from the latter. 
    more » « less
  2. We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the b-edgecover problem. A b-edgecover of minimum weight in a graph is a subset $C$ of its edges such that at least a specified number $b(v)$ of edges in $C$ is incident on each vertex $v$, and the sum of the edge weights in $C$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$-approximation guarantees in the worst-case for this problem, but these algorithms have limited parallelism. Hence we design two new $2$-approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a b-edgecover to that of finding a b'-matching, by exploiting the relationship between these subgraphs in an approximation context. The LSE-NW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSE-NW algorithms compute the same b-edgecover with at most twice the weight of the minimum weight edge cover. In practice, the $2$-approximation and $3/2$-approximation algorithms compute edge covers of weight within $10\%$ the optimal. We implement three of the approximation algorithms, MCE, LSE, and LSE-NW on shared memory multi-core machines, including an Intel Xeon and an IBM Power8 machine with 8 TB memory. The MCE algorithm is the fastest of these by an order of magnitude or more. It computes an edge cover in a graph with billions of edges in $20$ seconds using two hundred threads on the IBM Power8. We also show that the parallel depth and work can be bounded for the Suitor and b-Suitor algorithms when edge weights are random. 
    more » « less
  3. Expander graphs play a central role in graph theory and algorithms. With a number of powerful algorithmic tools developed around them, such as the Cut-Matching game, expander pruning, expander decomposition, and algorithms for decremental All-Pairs Shortest Paths (APSP) in expanders, to name just a few, the use of expanders in the design of graph algorithms has become ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems in static graphs, and algorithms for dynamic distance-based graph problems, such as APSP. Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example, the best currently known algorithm for decremental APSP in constant-degree expanders can only achieve a (log n) O(1/ 2 ) -approximation with n 1+O( ) total update time for any . All currently known algorithms for the Cut Player in the Cut-Matching game are either randomized, or provide rather weak guarantees: expansion 1/(log n) 1/ with running time n 1+O( ) . This, in turn, leads to somewhat weak algorithmic guarantees for several central cut problems: the best current almost linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut can only achieve approximation factor (log n) ω(1). Lastly, when relying on expanders in distancebased problems, such as dynamic APSP, via current methods, it seems inevitable that one has to settle for approximation factors that are at least Ω(log n). In contrast, we do not have any negative results that rule out a factor-5 approximation with near-linear total update time. In this paper we propose the use of well-connected graphs, and introduce a new algorithmic toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders. One of these new tools is the Distanced Matching game, an analogue of the Cut-Matching game for well-connected graphs. We demonstrate the power of these new tools by obtaining better results for several of the problems mentioned above. First, we design an algorithm for decremental APSP in expanders with significantly better guarantees: in a constant-degree expander, the algorithm achieves (log n) 1+o(1)-approximation, with total update time n 1+o(1). We also obtain a deterministic algorithm for the Cut Player in the Cut-Matching game that achieves expansion 1 (log n) 5+o(1) in time n 1+o(1), deterministic almost linear-time algorithms for Sparsest Cut, Lowest-Conductance Cut, and Minimum Balanced Cut with approximation factors O(poly log n), as well as improved deterministic algorithm for Expander Decomposition. We believe that the use of well-connected graphs instead of expanders in various dynamic distance-based problems (such as APSP in general graphs) has the potential of providing much stronger guarantees, since we are no longer necessarily restricted to superlogarithmic approximation factors. 
    more » « less
  4. We describe two new 3/2-approximation algorithms and a new 2-approximation algorithm for the minimum weight edge cover problem in graphs. We show that one of the 3/2-approximation algorithms, the Dual cover algorithm, computes the lowest weight edge cover relative to previously known algorithms as well as the new algorithms reported here. The Dual cover algorithm can also be implemented to be faster than the other 3/2-approximation algorithms on serial computers. Many of these algorithms can be extended to solve the 6-Edge cover problem as well. We show the relation of these algorithms to the K-Nearest Neighbor graph construction in semi-supervised learning and other applications. 
    more » « less
  5. In this paper, we generalize the recently studied stochastic matching problem to more accurately model a significant medical process, kidney exchange, and several other applications. Up until now the stochastic matching problem that has been studied was as follows: given a graph G= (V,E), each edge is included in the realized sub-graph of G independently with probability pe, and the goal is to find a degree-bounded sub-graph Q of G that has an expected maximum matching that approximates the expected maximum matching of G. This model does not account for possibilities of vertex dropouts, which can be found in several applications, e.g. in kidney exchange when donors or patients opt out of the exchange process as well as in online freelancing and online dating when online profiles are found to be faked. Thus, we will study a more generalized model of stochastic matching in which vertices and edges are both realized independently with some probabilities pv, pe, respectively, which more accurately fits important applications than the previously studied model. We will discuss the first algorithms and analysis for this generalization of the stochastic matching model and prove that they achieve good approximation ratios. In particular, we show that the approximation factor of a natural algorithm for this problem is at least 0.6568 in unweighted graphs, and 1/2+ε in weighted graphs for some constant ε >0. We further improve our result for unweighted graphs to 2/3 using edge degree constrained sub-graphs (EDCS). 
    more » « less