skip to main content


Title: Scaling Effects on the Electrochemical Stimulation Performance of Au, Pt, and PEDOT:PSS Electrocorticography Arrays
Abstract

The efficacy of electrical brain stimulation in combatting neurodegenerative diseases and initiating function is expected to be significantly enhanced with the development of smaller scale microstimulation electrodes and refined stimulation protocols. These benefits cannot be realized without a thorough understanding of scaling effects on electrochemical charge injection characteristics. This study fabricates and characterizes the electrochemical stimulation capabilities of Au, Pt, poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS/Au), and PEDOT:PSS/Pt electrode arrays in the 20–2000 µm diameter range. This study observes substantial enhancement in charge injection capacity up to 9.5× for PEDOT:PSS microelectrodes compared to metal ones, and 88% lower required power for injecting the same charge density. These significant benefits are strongest for electrode diameters below 200 µm. Detailed quantitative analyses are provided, enabling optimization of charge injection capacity with potential bias and symmetric and asymmetric pulse width engineering for all diameters. These systematic analyses inform the optimal design for acute and potentially chronic implants in regards to safety and clinically effective stimulation protocols, ensure the longevity of the electrodes below critical electrochemical limits of stimulation, and demonstrate that the material choice and pulse design can lead to more energy efficiency stimulation protocols that are of critical importance for fully implanted devices.

 
more » « less
NSF-PAR ID:
10039476
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
27
Issue:
42
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance. 
    more » « less
  2. Abstract

    Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone‐metal‐particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost‐effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications.

     
    more » « less
  3. Ultrasmall microelectrode arrays have the potential to improve the spatial resolution of microstimulation. Carbon fiber (CF) microelectrodes with cross-sections of less than 8 μm have been demonstrated to penetrate cortical tissue and evoke minimal scarring in chronic implant tests. In this study, we investigate the stability and performance of neural stimulation electrodes comprised of electrodeposited platinum-iridium (PtIr) on carbon fibers. We conducted pulse testing and characterized charge injection in vitro and recorded voltage transients in vitro and in vivo. Standard electrochemical measurements (impedance spectroscopy and cyclic voltammetry) and visual inspection (scanning electron microscopy) were used to assess changes due to pulsing. Similar to other studies, the application of pulses caused a decrease in impedance and a reduction in voltage transients, but analysis of the impedance data suggests that these changes are due to surface modification and not permanent changes to the electrode. Comparison of scanning electron microscope images before and after pulse testing confirmed electrode stability. 
    more » « less
  4. Abstract

    Flexible and stretchable electronics are a logical choice for the recording of biopotentials, due to their improved patient comfort and customizability. There is, however, significant variance in the signal quality received from these electrodes based on material, size, and target recording frequency. Here we develop a methodology based on Electrochemical Impedance Spectroscopy (EIS) and circuit modeling for optimizing electrodes for a specific application. We use EIS to measure the frequency dependent impedance characteristics of gold (Au) and silver/silver chloride (Ag/AgCl) electrodes of different diameters. Additionally, we use a Randles circuit model and perform model fitting with our data to extrapolate results to arbitrary frequencies and diameters. We found that at low frequencies (<1 Hz), Ag/AgCl had lower overall magnitude impedance than Au and at higher frequencies (1–1000 Hz), Au and Ag/AgCl performed similarly. Further, the magnitude impedance of the electrodes decreased linearly as electrode diameter increased. The methodology described in this study can be applicable to any customizable stretchable electronics fabrication process and enables design optimization for a target frequency, electrode size, and material.

     
    more » « less
  5. Abstract

    The latest developments in fiber design and materials science are paving the way for fibers to evolve from parts in passive components to functional parts in active fabrics. Designing conformable, organic electrochemical transistor (OECT) structures using poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) fibers has excellent potential for low‐cost wearable bioelectronics, bio‐hybrid devices, and adaptive neuromorphic technologies. However, to achieve high‐performance, stable devices from PEDOT:PSS fibers, approaches are required to form electrodes on fibers with small diameters and poor wettability, that leads to irregular coatings. Additionally, PEDOT:PSS‐fiber fabrication needs to move away from small batch processing to roll‐to‐roll or continuous processing. Here, it is shown that synergistic effects from a superior electrode/organic interface, and exceptional fiber alignment from continuous processing, enable PEDOT:PSS fiber‐OECTs with stable contacts, highµC* product (1570.5 F cm−1V−1s−1), and high hole mobility over 45 cm2V−1s−1. Fiber‐electrochemical neuromorphic organic devices (fiber‐ENODes) are developed to demonstrate that the high mobility fibers are promising building blocks for future bio‐hybrid technologies. The fiber‐ENODes demonstrate synaptic weight update in response to dopamine, as well as a form factor closely matching the neuronal axon terminal.

     
    more » « less