Abstract Neuromodulation technologies have gained considerable attention for their clinical potential in treating neurological disorders and advancing cognition research. However, traditional methods like electrical stimulation and optogenetics face technical and biological challenges that limit their therapeutic and research applications. A promising alternative, photoelectric neurostimulation, uses near‐infrared light to generate electrical pulses and thus enables stimulation of neuronal activity without genetic alterations. This study explores various design strategies to enhance photoelectric stimulation with minimally invasive, ultrasmall, untethered carbon electrodes. Employing a multiphoton laser as the near‐infrared (NIR) light source, benchtop experiments are conducted using a three‐electrode setup and chronopotentiometry to record photo‐stimulated voltage. In vivo evaluations utilize Thy1‐GCaMP6s mice with acutely implanted ultrasmall carbon electrodes. Results highlighted the beneficial effects of high duty‐cycle laser scanning and photovoltaic polymer interfaces on the photo‐stimulated voltages by the implanted electrode. Additionally, the promising potential of carbon‐based diamond electrodes are demonstrated for photoelectric stimulation and the application of photoelectric stimulation in precise chemical delivery by loading mesoporous silica nanoparticles (SNPs) co‐deposited with polyethylenedioxythiophene (PEDOT). Together, these findings on photoelectric stimulation utilizing ultrasmall carbon electrodes underscore its immense potential for advancing the next generation of neurostimulation technology. 
                        more » 
                        « less   
                    
                            
                            An Injectable Neural Stimulation Electrode Made from an In‐Body Curing Polymer/Metal Composite
                        
                    
    
            Abstract Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone‐metal‐particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost‐effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1720415
- PAR ID:
- 10459706
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- Volume:
- 8
- Issue:
- 23
- ISSN:
- 2192-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design. This inability to rapidly and cost-effectively prototype novel cuff designs impedes research into selective neuromodulation therapies in acute studies. To address this, we developed a reproducible method to easily create multi-channel epineural nerve cuffs for selective fascicular neuromodulation. Leveraging commercial flexible printed circuit (FPC) technology, we created cuffs with high spatial resolution (50 μm) and customizable parameters like electrode size, channel count, and cuff diameter. We designed cuffs to accommodate adult mouse or rat sciatic nerves (300–1500 μm diameter). We coated the electrodes with PEDOT:PSS to improve the charge injection capacity. We demonstrated selective neuromodulation in both rats and mice, achieving preferential activation of the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles. Selectivity was confirmed through micro-computed tomography (μCT) and quantified through a selectivity index. These results demonstrate the potential of this fabrication method for enabling selective neuromodulation studies while significantly reducing production time and costs compared to traditional approaches.more » « less
- 
            Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance.more » « less
- 
            Abstract Here, an unobtrusive, adhesive‐integrated electrode array for continuous monitoring of stomach electric activity is introduced. This patient‐friendly, disposable peel‐and‐stick adhesive device represents an important advancement over existing arrays that require placement of each electrode individually and are thus also labor intensive and are in general more rigid and cumbersome. In comparison to other silver–silver chloride electrodes, this skin conformal array does not require gel and thus can withstand low impedance over the duration of long recordings. Interfacing these electrodes with miniaturized electronic recording and wireless telemetry systems has the potential to enable scalable population health opportunities to perform objective gastrointestinal assessment and optimization of treatment regimens.more » « less
- 
            Abstract Dynamic windows allow user control over light and heat flow to save energy and maximize comfort. Reversible metal electrodeposition (RME) dynamic windows can uniquely tint to a color‐neutral privacy state (0.1% visible light transmission). The design parameters of transparent metal mesh counter electrodes for high‐contrast RME dynamic windows: high transparency, charge capacity and surface area with low haze, sheet resistance and cost are discussed, concluding that woven metal meshes meet these design parameters. Electroplated current is measured on an indium tin oxide electrode and two meshes with different wire spacings, showing the meshes’ cylindrical geometry enable them to draw more current per square area. The mesh material composition is analyzed to ensure cycling durability in a CuBi electrolyte by developing a transparent mesh with an inert core (stainless steel, SS), a thin Au coating, and a high charge‐capacity (1.5 C cm−2) CuBi outer coating. The study demonstrates that the films maintain a consistent Cu:Bi ratio and optical properties after 250 privacy cycles or 1500 cycles to 10% transmission, showing that the Cu and Bi coating is effective in keeping the films from becoming Cu rich with cycling. Finally, a 100 cm2device with excellent uniformity and color neutrality is demonstrated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
