skip to main content


Title: A new depression‐dominated delineation ( D ‐cubed) method for improved watershed modelling
Abstract

Prior to hydrologic modelling, topographic features of a surface are derived, and the surface is divided into sub‐basins. Surface delineation can be described as a procedure, which leads to the quantitative rendition of surface topography. Different approaches have been developed for surface delineation, but most of them may not be applicable to depression‐dominated surfaces. The main objective of this study is to introduce a new depression‐dominated delineation (D‐cubed) method and highlight its unique features by applying it to different topographic surfaces. The D‐cubed method accounts for the hierarchical relationships of depressions and channels by introducing the concept of channel‐based unit (CBU) and its connection with the concept of puddle‐based unit (PBU). This new delineation method implements a set of new algorithms to determine flow directions and accumulations for puddle‐related flats. The D‐cubed method creates a unique cascaded channel‐puddle drainage system based on the channel segmentation algorithm. To demonstrate the capabilities of the D‐cubed method, a small laboratory‐scale surface and 2 natural surfaces in North Dakota were delineated. The results indicated that the new method delineated different surfaces with and without the presence of depressional areas. Stepwise changes in depression storage and ponding area were observed for the 3 selected surfaces. These stepwise changes highlighted the dynamic filling, spilling, and merging processes of depressions, which need to be considered in hydrologic modelling for depression‐dominated areas. Comparisons between the D‐cubed method and other methods emphasized the potential consequences of use of artificial channels through the flats created by the depression‐filling process in the traditional approaches. In contrast, in the D‐cubed method, sub‐basins were further divided into a number of smaller CBUs and PBUs, creating a channel‐puddle drainage network. The testing of the D‐cubed method also demonstrated its applicability to a wide range of digital elevation model resolutions. Consideration of CBUs, PBUs, and their connection provides the opportunity to incorporate the D‐cubed method into different hydrologic models and improve their simulation of topography‐controlled runoff processes, especially for depression‐dominated areas.

 
more » « less
NSF-PAR ID:
10039757
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
31
Issue:
19
ISSN:
0885-6087
Page Range / eLocation ID:
p. 3364-3378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Calculating flow routing across a landscape is a routine process in geomorphology, hydrology, planetary science, and soil and water conservation. Flow-routing calculations often require a preprocessing step to remove depressions from a DEM to create a “flow-routing surface” that can host a continuous, integrated drainage network. However, real landscapes contain natural depressions that trap water. These are an important part of the hydrologic system and should be represented in flow-routing surfaces. Historically, depressions (or “pits”) in DEMs have been viewed as data errors, but the rapid expansion of high-resolution, high-precision DEM coverage increases the likelihood that depressions are real-world features. To address this long-standing problem of emerging significance, we developed FlowFill, an algorithm that routes a prescribed amount of runoff across the surface in order to flood depressions if enough water is available. This mass-conserving approach typically floods smaller depressions and those in wet areas, integrating drainage across them, while permitting internal drainage and disruptions to hydrologic connectivity. We present results from two sample study areas to which we apply a range of uniform initial runoff depths and report the resulting filled and unfilled depressions, the drainage network structure, and the required compute time. For the reach- to watershed-scale examples that we ran, FlowFill compute times ranged from approximately 1 to 30 min, with compute times per cell of 0.0001 to 0.006 s. 
    more » « less
  2. Abstract

    Delineating accurate flowlines using digital elevation models is a critical step for overland flow modeling. However, extracting surface flowlines from high‐resolution digital elevation models (HRDEMs) can be biased, partly due to the absence of information on the locations of anthropogenic drainage structures (ADS) such as bridges and culverts. Without the ADS, the roads may act as “digital dams” that prevent accurate delineation of flowlines. However, it is unclear what variables for terrain‐based hydrologic modeling can be used to mitigate the effect of “digital dams.” This study assessed the impacts of ADS locations, spatial resolution, depression processing methods, and flow direction algorithms on hydrologic connectivity in an agrarian landscape of Nebraska. The assessment was conducted based on the offset distances between modeled drainage crossings and actual ADS on the road. Results suggested that: (a) stream burning in combination with the D8 or D‐Infinity flow direction algorithm is the best option for modeling surface flowlines from HRDEMs in an agrarian landscape; (b) increasing the HRDEM resolution was found significant for facilitating accurate drainage crossing near ADS locations; and (c) D8 and D‐Infinity flow direction algorithms resulted in similar patterns of drainage crossing at ADS locations. This research is expected to result in improved parameter settings for HRDEMs‐based hydrologic modeling.

     
    more » « less
  3. Abstract

    A notable characteristic of terrain in non‐urbanized deglaciated areas of northeastern North America is the microtopography created by processes related to surficial geology, deglaciation and mechanical disturbances to surface materials from excavating events, most of which are caused by tree throw in the modern landscape. The features are often on the scale of 1–4 m across and decimetres to a metre in depth, appearing as ‘puddles’ during intense or high‐magnitude precipitation events. Generalized storage capacity values have been summarized in textbooks for varied landscape conditions, but surprisingly little information is available about how microtopography and related surface water storage varies in dominant physiographic settings in deglaciated landscapes defined by slope, surficial geology and land cover conditions. The increasing availability of elevation data at a horizontal resolution of 2 m or higher has made it possible to remotely evaluate differences in terrain elevation and quantify upland surface water storage capacity from relatively small topographic depressions. Here, we describe and quantify these topographic features in several coastal and inland watersheds in the state of Maine (USA) with measurements of depression volume calculated from digital elevation models (DEMs) using a pit filling approach. Results show that microtopographic storage capacity varies with slope and land cover conditions in deglaciated terrain of northeastern North America. Basin‐average surface water depression storage capacity estimates range from ~4 mm to as low as 0.2 mm. Human interventions such as clearing land for agriculture are associated with lower microtopographic surface water storage capacity than forested landscapes in the region.

     
    more » « less
  4. In the low-relief post-glacial landscapes of the Central Lowlands of the United States, fluvial networks formed and expanded following deglaciation despite the low slopes and large fraction of the land surface occupied by closed depressions. Low relief topography allows for subtle surface water divides and increases the likelihood that groundwater divides do not coincide with surface water divides. We investigate how groundwater transfer across subtle surface water divides facilitates channel network expansion using a numerical model built on the Landlab platform. Our model simulates surface and subsurface water routing and fluvial erosion. We consider two end-member scenarios for surface water routing, one in which surface water in closed depressions is forced to connect to basin outlets (routing) and one in which surface water in closed depressions is lost to evapotranspiration (no routing). Groundwater is modeled as fully saturated flow within a confined aquifer. Groundwater emerges as surface water where the landscape has eroded to a specified depth. We held the total water flux constant and varied the fraction of water introduced as groundwater versus precipitation. Channel growth is significantly faster in routing cases than no-routing cases given identical groundwater fractions. In both routing and no-routing cases, channel expansion is fastest when ~30% of the total water enters the system as groundwater. Groundwater contributions also produce distinctive morphology including steepened channel profiles below groundwater seeps. Groundwater head gradients evolve with topography and groundwater-fed channels can grow more quickly than channels with larger surface water catchments. We conclude that rates of channel network growth in low-relief post-glacial areas are sensitive to groundwater contributions. More broadly, our findings suggest that landscape evolution models may benefit from more detailed representation of hydrologic processes. 
    more » « less
  5. Abstract

    The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

     
    more » « less