skip to main content


Title: Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Abstract. Calculating flow routing across a landscape is a routine process in geomorphology, hydrology, planetary science, and soil and water conservation. Flow-routing calculations often require a preprocessing step to remove depressions from a DEM to create a “flow-routing surface” that can host a continuous, integrated drainage network. However, real landscapes contain natural depressions that trap water. These are an important part of the hydrologic system and should be represented in flow-routing surfaces. Historically, depressions (or “pits”) in DEMs have been viewed as data errors, but the rapid expansion of high-resolution, high-precision DEM coverage increases the likelihood that depressions are real-world features. To address this long-standing problem of emerging significance, we developed FlowFill, an algorithm that routes a prescribed amount of runoff across the surface in order to flood depressions if enough water is available. This mass-conserving approach typically floods smaller depressions and those in wet areas, integrating drainage across them, while permitting internal drainage and disruptions to hydrologic connectivity. We present results from two sample study areas to which we apply a range of uniform initial runoff depths and report the resulting filled and unfilled depressions, the drainage network structure, and the required compute time. For the reach- to watershed-scale examples that we ran, FlowFill compute times ranged from approximately 1 to 30 min, with compute times per cell of 0.0001 to 0.006 s.  more » « less
Award ID(s):
1903606
PAR ID:
10173175
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
7
Issue:
3
ISSN:
2196-632X
Page Range / eLocation ID:
737 to 753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the low-relief post-glacial landscapes of the Central Lowlands of the United States, fluvial networks formed and expanded following deglaciation despite the low slopes and large fraction of the land surface occupied by closed depressions. Low relief topography allows for subtle surface water divides and increases the likelihood that groundwater divides do not coincide with surface water divides. We investigate how groundwater transfer across subtle surface water divides facilitates channel network expansion using a numerical model built on the Landlab platform. Our model simulates surface and subsurface water routing and fluvial erosion. We consider two end-member scenarios for surface water routing, one in which surface water in closed depressions is forced to connect to basin outlets (routing) and one in which surface water in closed depressions is lost to evapotranspiration (no routing). Groundwater is modeled as fully saturated flow within a confined aquifer. Groundwater emerges as surface water where the landscape has eroded to a specified depth. We held the total water flux constant and varied the fraction of water introduced as groundwater versus precipitation. Channel growth is significantly faster in routing cases than no-routing cases given identical groundwater fractions. In both routing and no-routing cases, channel expansion is fastest when ~30% of the total water enters the system as groundwater. Groundwater contributions also produce distinctive morphology including steepened channel profiles below groundwater seeps. Groundwater head gradients evolve with topography and groundwater-fed channels can grow more quickly than channels with larger surface water catchments. We conclude that rates of channel network growth in low-relief post-glacial areas are sensitive to groundwater contributions. More broadly, our findings suggest that landscape evolution models may benefit from more detailed representation of hydrologic processes. 
    more » « less
  2. null (Ed.)
    Abstract. Depressions – inwardly draining regions – are common to many landscapes. When there is sufficient moisture, depressions take the form of lakes and wetlands; otherwise, they may be dry. Hydrological flow models used in geomorphology, hydrology, planetary science, soil and water conservation, and other fields often eliminate depressions through filling or breaching; however, this can produce unrealistic results. Models that retain depressions, on the other hand, are often undesirably expensive to run. In previous work we began to address this by developing a depression hierarchy data structure to capture the full topographic complexity of depressions in a region. Here, we extend this work by presenting the Fill–Spill–Merge algorithm that utilizes our depression hierarchy data structure to rapidly process and distribute runoff. Runoff fills depressions, which then overflow and spill into their neighbors. If both a depression and its neighbor fill, they merge. We provide a detailed explanation of the algorithm and results from two sample study areas. In these case studies, the algorithm runs 90–2600 times faster (with a reduction in compute time of 2000–63 000 times) than the commonly used Jacobi iteration and produces a more accurate output. Complete, well-commented, open-source code with 97 % test coverage is available on GitHub and Zenodo. 
    more » « less
  3. null (Ed.)
    Abstract. Topography is a fundamental input to hydrologic models criticalfor generating realistic streamflow networks as well as infiltration andgroundwater flow. Although there exist several national topographic datasetsfor the United States, they may not be compatible with gridded models thatrequire hydrologically consistent digital elevation models (DEMs). Here, wepresent a national topographic dataset developed to support griddedhydrologic simulations at 1 km and 250 m spatial resolution over the contiguousUnited States. The workflow is described step by step in two parts: (a) DEMprocessing using a Priority Flood algorithm to ensure hydrologicallyconsistent drainage networks and (b) slope calculation and smoothing toimprove drainage performance. The accuracy of the derived stream network isevaluated by comparing the derived drainage area to drainage areas reportedby the national stream gage network. The slope smoothing steps are evaluatedusing the runoff simulations with an integrated hydrologic model. Our DEMproduct started from the National Water Model DEM to ensure our finaldatasets will be as consistent as possible with this existing nationalframework. Our analysis shows that the additional processing we provideimproves the consistency of simulated drainage areas and the runoffsimulations that simulate gridded overland flow (as opposed to a networkrouting scheme). The workflow uses an open-source R package, and all outputdatasets and processing scripts are available and fully documented. All ofthe output datasets and scripts for processing are published through CyVerseat 250 m and 1 km resolution. The DOI link for the dataset is https://doi.org/10.25739/e1ps-qy48 (Zhang and Condon, 2020). 
    more » « less
  4. Abstract

    The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

     
    more » « less
  5. Abstract

    Prior to hydrologic modelling, topographic features of a surface are derived, and the surface is divided into sub‐basins. Surface delineation can be described as a procedure, which leads to the quantitative rendition of surface topography. Different approaches have been developed for surface delineation, but most of them may not be applicable to depression‐dominated surfaces. The main objective of this study is to introduce a new depression‐dominated delineation (D‐cubed) method and highlight its unique features by applying it to different topographic surfaces. The D‐cubed method accounts for the hierarchical relationships of depressions and channels by introducing the concept of channel‐based unit (CBU) and its connection with the concept of puddle‐based unit (PBU). This new delineation method implements a set of new algorithms to determine flow directions and accumulations for puddle‐related flats. The D‐cubed method creates a unique cascaded channel‐puddle drainage system based on the channel segmentation algorithm. To demonstrate the capabilities of the D‐cubed method, a small laboratory‐scale surface and 2 natural surfaces in North Dakota were delineated. The results indicated that the new method delineated different surfaces with and without the presence of depressional areas. Stepwise changes in depression storage and ponding area were observed for the 3 selected surfaces. These stepwise changes highlighted the dynamic filling, spilling, and merging processes of depressions, which need to be considered in hydrologic modelling for depression‐dominated areas. Comparisons between the D‐cubed method and other methods emphasized the potential consequences of use of artificial channels through the flats created by the depression‐filling process in the traditional approaches. In contrast, in the D‐cubed method, sub‐basins were further divided into a number of smaller CBUs and PBUs, creating a channel‐puddle drainage network. The testing of the D‐cubed method also demonstrated its applicability to a wide range of digital elevation model resolutions. Consideration of CBUs, PBUs, and their connection provides the opportunity to incorporate the D‐cubed method into different hydrologic models and improve their simulation of topography‐controlled runoff processes, especially for depression‐dominated areas.

     
    more » « less