skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets
Award ID(s):
1650900
PAR ID:
10040006
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Empirical Methods in Natural Language Processing
Page Range / eLocation ID:
225 to 235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precup, Doina; Chandar, Sarath; Pascanu, Razvan (Ed.)
    In this paper, we show that the process of continually learning new tasks and memorizing previous tasks introduces unknown privacy risks and challenges to bound the privacy loss. Based upon this, we introduce a formal definition of Lifelong DP, in which the participation of any data tuples in the training set of any tasks is protected, under a consistently bounded DP protection, given a growing stream of tasks. A consistently bounded DP means having only one fixed value of the DP privacy budget, regardless of the number of tasks. To preserve Lifelong DP, we propose a scalable and heterogeneous algorithm, called L2DP-ML with a streaming batch training, to efficiently train and continue releasing new versions of an L2M model, given the heterogeneity in terms of data sizes and the training order of tasks, without affecting DP protection of the private training set. An end-to-end theoretical analysis and thorough evaluations show that our mechanism is significantly better than baseline approaches in preserving Lifelong DP. The implementation of L2DP-ML is available at: https://github.com/haiphanNJIT/PrivateDeepLearning. 
    more » « less
  2. null (Ed.)