skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task -- predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve cross-channel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.  more » « less
Award ID(s):
1633310 1514512
PAR ID:
10040279
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN:
2332-564X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Learning low-dimensional representations of graphs has facilitated the use of traditional machine learning techniques to solving classic network analysis tasks such as link prediction, node classification, community detection, etc. However, to date, the vast majority of these learning tasks are focused on traditional single-layer/unimodal networks and largely ignore the case of multiplex networks. A multiplex network is a suitable structure to model multi-dimensional real-world complex systems. It consists of multiple layers where each layer represents a different relationship among the network nodes. In this work, we propose MUNEM, a novel approach for learning a low-dimensional representation of a multiplex network using a triplet loss objective function. In our approach, we preserve the global structure of each layer, while at the same time fusing knowledge among different layers during the learning process. We evaluate the effectiveness of our proposed method by testing and comparing on real-world multiplex networks from different domains, such as collaboration network, protein-protein interaction network, online social network. Finally, in order to deliberately examine the effect of our model’s parameters we conduct extensive experiments on synthetic multiplex networks. 
    more » « less
  2. In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning. 
    more » « less
  3. In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning. 
    more » « less
  4. null (Ed.)
    Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph autoencoders and its variants have gained much attention and popularity among various types of node embedding approaches. Most existing graph autoencoder-based methods aim to minimize the reconstruction errors of the input network while not explicitly considering the semantic relatedness between nodes. In this paper, we propose a novel network embedding method which models the consistency across different views of networks. More specifically, we create a second view from the input network which captures the relation between nodes based on node content and enforce the latent representations from the two views to be consistent by incorporating a multiview adversarial regularization module. The experimental studies on benchmark datasets prove the effectiveness of this method, and demonstrate that our method compares favorably with the state-of-the-art algorithms on challenging tasks such as link prediction and node clustering. We also evaluate our method on a real-world application, i.e., 30-day unplanned ICU readmission prediction, and achieve promising results compared with several baseline methods. 
    more » « less
  5. The growing number of AI-driven applications in mobile devices has led to solutions that integrate deep learning models with the available edge-cloud resources. Due to multiple benefits such as reduction in on-device energy consumption, improved latency, improved network usage, and certain privacy improvements, split learning, where deep learning models are split away from the mobile device and computed in a distributed manner, has become an extensively explored topic. Incorporating compression-aware methods (where learning adapts to compression level of the communicated data) has made split learning even more advantageous. This method could even offer a viable alternative to traditional methods, such as federated learning techniques. In this work, we develop an adaptive compression-aware split learning method (“deprune”) to improve and train deep learning models so that they are much more network-efficient, which would make them ideal to deploy in weaker devices with the help of edge-cloud resources. This method is also extended (“prune”) to very quickly train deep learning models through a transfer learning approach, which tradesoff little accuracy for much more network-efficient inference abilities. We show that the “deprune” method can reduce network usage by 4× when compared with a split-learning approach (that does not use our method) without loss of accuracy, while also improving accuracy over compression-aware split-learning by up to 4 percent. Lastly, we show that the “prune” method can reduce the training time for certain models by up to 6× without affecting the accuracy when compared against a compression-aware split-learning approach. 
    more » « less