skip to main content

Search for: All records

Award ID contains: 1633310

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vedaldi A., Bischof H. (Ed.)
  2. Vedaldi A., Bischof H. (Ed.)
  3. Our goal in this paper is to discover near duplicate patterns in large collections of artworks. This is harder than standard instance mining due to differences in the artistic media (oil, pastel, drawing, etc), and imperfections inherent in the copying process. The key technical insight is to adapt a standard deep feature to this task by fine-tuning it on the specific art collection using self-supervised learning. More specifically, spatial consistency between neighbouring feature matches is used as supervisory fine-tuning signal. The adapted feature leads to more accurate style-invariant matching, and can be used with a standard discovery approach, based on geometric verification, to identify duplicate patterns in the dataset. The approach is evaluated on several different datasets and shows surprisingly good qualitative discovery results. For quantitative evaluation of the method, we annotated 273 near duplicate details in a dataset of 1587 artworks attributed to Jan Brueghel and his workshop. Beyond artwork, we also demonstrate improvement on localization on the Oxford5K photo dataset as well as on historical photograph localization on the Large Time Lags Location (LTLL) dataset.
  4. We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model optimizes a spatial feature representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods. Overall, we find that the learned representation generalizes surprisingly well, despite being trained only on indoor videos and without fine-tuning.
  5. While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
  6. Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models have shown tremendous progress towards adapting to new environments by focusing either on discovering domain invariant representations or by mapping between unpaired image domains. While feature space methods are difficult to interpret and sometimes fail to capture pixel-level and low-level domain shifts, image space methods sometimes fail to incorporate high level semantic knowledge relevant for the end task. We propose a model which adapts between domains using both generative image space alignment and latent representation space alignment. Our approach, Cycle-Consistent Adversarial Domain Adaptation (CyCADA), guides transfer between domains according to a specific discriminatively trained task and avoids divergence by enforcing consistency of the relevant semantics before and after adaptation. We evaluate our method on a variety of visual recognition and prediction settings, including digit classification and semantic segmentation of road scenes, advancing state-of-the-art performance for unsupervised adaptation from synthetic to real world driving domains.
  7. Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain $X$ to a target domain $Y$ in the absence of paired examples. Our goal is to learn a mapping $G: X \rightarrow Y$ such that the distribution of images from $G(X)$ is indistinguishable from the distribution $Y$ using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping $F: Y \rightarrow X$ and introduce a {\em cycle consistency loss} to push $F(G(X)) \approx X$ (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.