skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Putting the Pieces Back Together Again: Contest Webs for Large-Scale Problem Solving
A key issue, whenever people work together to solve a complex problem, is how to divide the problem into parts done by different people and combine the parts into a solution for the whole problem. This paper presents a novel way of doing this with groups of contests called contest webs. Based on the analogy of supply chains for physical products, the method provides incentives for people to (a) reuse work done by themselves and others, (b) simultaneously explore multiple ways of combining interchangeable parts, and (c) work on parts of the problem where they can contribute the most. The paper also describes a field test of this method in an online community of over 50,000 people who are developing proposals for what to do about global climate change. The early results suggest that the method can, indeed, work at scale as intended.  more » « less
Award ID(s):
1302522
PAR ID:
10040400
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Conference on Computer Supported Cooperative Work and Social Computing
Page Range / eLocation ID:
1661 to 1674
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific collections have been built by people. For hundreds of years, people have collected, studied, identified, preserved, documented and curated collection specimens. Understanding who those people are is of interest to historians, but much more can be made of these data by other stakeholders once they have been linked to the people’s identities and their biographies. Knowing who people are helps us attribute work correctly, validate data and understand the scientific contribution of people and institutions. We can evaluate the work they have done, the interests they have, the places they have worked and what they have created from the specimens they have collected. The problem is that all we know about most of the people associated with collections are their names written on specimens. Disambiguating these people is the challenge that this paper addresses. Disambiguation of people often proves difficult in isolation and can result in staff or researchers independently trying to determine the identity of specific individuals over and over again. By sharing biographical data and building an open, collectively maintained dataset with shared knowledge, expertise and resources, it is possible to collectively deduce the identities of individuals, aggregate biographical information for each person, reduce duplication of effort and share the information locally and globally. The authors of this paper aspire to disambiguate all person names efficiently and fully in all their variations across the entirety of the biological sciences, starting with collections. Towards that vision, this paper has three key aims: to improve the linking, validation, enhancement and valorisation of person-related information within and between collections, databases and publications; to suggest good practice for identifying people involved in biological collections; and to promote coordination amongst all stakeholders, including individuals, natural history collections, institutions, learned societies, government agencies and data aggregators. 
    more » « less
  2. Abstract In recent years there has been an increasing emphasis on achieving convergence in disaster research, policy, and programs to reduce disaster losses and enhance social well-being. However, there remain considerable gaps in understanding “how do we actually do convergence?” In this article, we present three case studies from across geographies—New South Wales in Australia, and North Carolina and Oregon in the United States; and sectors of work—community, environmental, and urban resilience, to critically examine what convergence entails and how it can enable diverse disciplines, people, and institutions to reduce vulnerability to systemic risks in the twenty-first century. We identify key successes, challenges, and barriers to convergence. We build on current discussions around the need for convergence research to be problem-focused and solutions-based, by also considering the need to approach convergence as ethic, method, and outcome. We reflect on how convergence can be approached as an ethic that motivates a higher order alignment on “why” we come together; as a method that foregrounds “how” we come together in inclusive ways; and as an outcome that highlights “what” must be done to successfully translate research findings into the policy and public domains. 
    more » « less
  3. In 2018, AMD added support for an updated gem5 GPU model based on their GCN3 architecture. Having a high-fidelity GPU model allows for more accurate research into optimizing modern GPU applications. However, the complexity of getting the necessary libraries and drivers, needed for this model to run GPU applications in gem5, made it difficult to use. This post describes the work we have done with increasing the usability of the GPU model by simplifying the setup process, extending the types of applications that can be run, and optimizing parts of the software stack used by the GPU model. 
    more » « less
  4. Co-design, or integrated physical and control system design, has been demonstrated successfully for several engineering system design optimization applications, primarily in a deterministic manner. An opportunity exists to study non-deterministic co-design strategies, including incorporation of uncertainty-induced failures, into an integrated co-design framework. Reliability-based design optimization (RBDO) is one such method that can be used to increase the likelihood of having a feasible design that satisfies all reliability constraints. While significant recent advancements have been made in co-design and RBDO separately, limited work has been done where reliability-based dynamic system design and control design optimization are considered jointly. In this paper, the co-design problem is integrated with the RBDO framework to yield a system-optimal design and the corresponding control trajectory, which satisfy all reliability constraints in the presence of parameter variations. Different problem formulations and RBDO algorithms are compared through numerical examples. The design of a horizontal-axis wind turbine (HAWT) supported by a lattice tower (with parameter uncertainties) is presented to demonstrate the applicability of the proposed method. 
    more » « less
  5. This paper addresses the problem of detecting pedestrians using an enhanced object detection method. In particular, the paper considers the occluded pedestrian detection problem in autonomous driving scenarios where the balance of performance between accuracy and speed is crucial. Existing works focus on learning representations of unique persons independent of body parts semantics. To achieve a real-time performance along with robust detection, we introduce a body parts based pedestrian detection architecture where body parts are fused through a computationally effective constraint optimization technique. We demonstrate that our method significantly improves detection accuracy while adding negligible runtime overhead. We evaluate our method using a real-world dataset. Experimental results show that the proposed method outperforms existing pedestrian detection methods. 
    more » « less