skip to main content

Title: Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings
Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved more » in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind. « less
Award ID(s):
Publication Date:
Journal Name:
Wind and Structures
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As a consequence of the warm and humid climate of tropical coastal regions, there is high energy demand year-round due to air conditioning to maintain indoor comfort levels. Past and current practices are focused on mitigating peak cooling demands by improving heat balances by using efficient building envelope technologies, passive systems, and demand side management strategies. In this study, we explore city-scale solar photovoltaic (PV) planning integrating information on climate, building parameters and energy models, and electrical system performance, with added benefits for the tropical coastal city of San Juan, Puerto Rico. Energy balance on normal roof, flush-mounted PVmore »roof, and tilted PV roof are used to determine PV power generation, air, and roof surface temperatures. To scale up the application to the whole city, we use the urbanized version of the Weather Research and Forecast (WRF) model with the building effect parameterization (BEP) and the building energy model (BEM). The city topology is represented by the World Urban Database Access Portal Tool (WUDAPT), local climate zones (LCZs) for urban landscapes. The modeled peak roof temperature is maximum for normal roof conditions and minimum when inclined PV is installed on a roof. These trends are followed by the building air conditioning (AC) demand from urbanized WRF, maximum for normal roof and minimum for inclined roof-mounted PV. The net result is a reduced daytime Urban Heat Island (UHI) for horizontal and inclined PV roof and increased nighttime UHI for the horizontal PV roof as compared with the normal roof. The ratio between coincident AC demand and PV production for the entire metropolitan region is further analyzed reaching 20% for compact low rise and open low rise buildings due to adequate roof area but reaches almost 100% for compact high rise and compact midrise buildings class, respectively.« less
  2. Laboratory experiments were performed on a geometrically scaled vertical-axis wind turbine model over an unprecedented range of Reynolds numbers, including and exceeding those of the full-scale turbine. The study was performed in the high-pressure environment of the Princeton High Reynolds number Test Facility (HRTF). Utilizing highly compressed air as the working fluid enabled extremely high Reynolds numbers while still maintaining dynamic similarity by matching the tip speed ratio (defined as the ratio of tip velocity to free stream, $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D714}R/U$ ) and Mach number (defined at the turbine tip, $Ma=\unicode[STIX]{x1D714}R/a$ ). Preliminary comparisons are made with measurements from the full-scale fieldmore »turbine. Peak power for both the field data and experiments resides around $\unicode[STIX]{x1D706}=1$ . In addition, a systematic investigation of trends with Reynolds number was performed in the laboratory, which revealed details about the asymptotic behaviour. It was shown that the parameter that characterizes invariance in the power coefficient was the Reynolds number based on blade chord conditions ( $Re_{c}$ ). The power coefficient reaches its asymptotic value when $Re_{c}>1.5\times 10^{6}$ , which is higher than what the field turbine experiences. The asymptotic power curve is found, which is invariant to further increases in Reynolds number.« less
  3. Nonstructural components within mission-critical facilities such as hospitals and telecommunication facilities are vital to a community's resilience when subjected to a seismic event. Building contents like medical and computer equipment are critical for the response and recovery process following an earthquake. A solution to protecting these systems from seismic hazards is base isolation. Base isolation systems are designed to decouple an entire building structure from destructive ground motions. For other buildings not fitted with base isolation, a practical and economical solution to protect vital building contents from earthquake-induced floor motion is to isolate individual equipment using, for example, rolling-type isolationmore »systems (RISs). RISs are a relatively new innovation for protecting equipment. These systems function as a pendulum-like mechanism to convert horizontal motion into vertical motion. An accompanying change in potential energy creates a restoring force related to the slope of the rolling surface. This study seeks to evaluate the seismic hazard mitigation performance of RISs, as well as propose and test a novel double RIS. A physics-based mathematical model was developed for a single RIS via Lagrange's equation adhering to the kinetic constraint of rolling without slipping. The mathematical model for the single RIS was used to predict the response and characteristics of these systems. A physical model was fabricated with additive manufacturing and tested against multiple earthquakes on a shake table. The system featured a single-degree-of-freedom (SDOF) structure to represent a piece of equipment. The results showed that the RIS effectively reduced accelerations felt by the SDOF compared to a fixed-base SDOF system. The single RIS experienced the most substantial accelerations from the Mendocino record, which contains low-frequency content in the range of the RIS's natural period (1-2 seconds). Earthquakes with these long-period components have the potential to cause impacts within the isolation bearing that would degrade its performance. To accommodate large displacements, a double RIS is proposed. The double RIS has twice the displacement capacity of a single RIS without increasing the size of the bearing components. The mathematical model for the single RIS was extended to the double RIS following a similar procedure. Two approaches were used to evaluate the double RIS's performance: stochastic and deterministic. The stochastic response of the double RIS under stationary white noise excitation was evaluated for relevant system parameters, namely mass ratio and tuning frequency. Both broadband and filtered (Kanai-Tajimi) white noise excitation were considered. The response variances of the double RIS were normalized by a baseline single RIS for a comparative study, from which design parameter maps were drawn. A deterministic analysis was conducted to further evaluate the double RIS in the case of nonstationary excitation. The telecommunication equipment qualification waveform, VERTEQ-II, was used for these numerical simulations. Peak transient responses were compared to the single RIS responses, and optimal design regions were determined. General design guidelines based on the stochastic and deterministic analyses are given. The results aim to provide a framework usable in the preliminary design stage of a double RIS to mitigate seismic responses.« less
  4. A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. Themore »turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments.« less
  5. This paper explores a cyber-physical systems (CPS) approach to optimize the design of rigid, low-rise structures subjected to wind loading. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a computer, and actuators used to generate physical changes to a mechatronic structural model. The approach was demonstrated for a low-rise structure with a parapet wall of variable height. A non-stochastic optimization algorithm was implemented to search alongmore »the domain of parapet heights to minimize both positive and negative pressures on the roof a of a 1:18 length scale low-rise building model. Experiments were conducted at the University of Florida Experimental Facility (UFEF) of the National Science Foundation’s (NSF) Natural Hazard Engineering Research Infrastructure (NHERI) program.« less