skip to main content


Title: Advancing Teacher Training Programs at Historically Black Colleges and Universities through Technical Assistance and Federal Investments (Editor’s Commentary)
We evaluated the efficacy of a technical assistance (TA) model for increasing the competitiveness of historically Black colleges and universities (HBCUs) and other minority-serving institutions (MSI) seeking funding to expand their teacher training through the National Science Foundation (NSF)’s Robert Noyce Teacher Scholarship (Noyce) Program. The Noyce Program addresses the President’s Council of Advisors on Science and Technology (PCAST) goal to support at least 100,000 new STEM middle and high school teachers. The Quality Education for Minorities (QEM) Network engaged in a series of strategies to broaden participation of Noyce to MSIs, with the long-term goal of diversifying the pipeline of new STEM teachers. Results found that of the 335 active Noyce awards, 39 were awards to MSIs. Of the 39, 23 (59%) were awarded to institutions represented in at least one QEM Noyce TA workshop. This study looks at the potential of TA models for HBCUs and MSIs to generalize across a spectrum of initiatives aimed at strengthening the nation’s teacher education programs, and graduating quality STEM teachers.  more » « less
Award ID(s):
1644294 1742877
NSF-PAR ID:
10042334
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Negro education
Volume:
86
Issue:
2
ISSN:
2167-6437
Page Range / eLocation ID:
83-93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smith, W. M. (Ed.)
    The NebraskaMATH Omaha Noyce Partnership Scholarship awards scholarships funded by the National Science Foundation (NSF) to undergraduate students interested in mathematics education at the University of Nebraska at Omaha (UNO). Scholars, who are dual mathematics and secondary education majors, are engaged and supported by Noyce faculty to not only excel in their college coursework and career preparation, but also to serve the university and community through teaching assistantships and STEM community outreach. The main goal of this program is to strengthen and expand the pipeline for preparing high-quality teachers of mathematics to better meet the responsibilities and demands of local school districts, particularly those serving students with high-need. Cross-campus collaborations between the departments of teacher education and mathematics co-constructed the Noyce infrastructure to emphasize and share the development of future, high-quality secondary mathematics teachers (Mathematics Teacher Education Partnership, 2014). This paper describes our program’s unique design and implementation features aimed to empower, engage, and extend the talents of our undergraduate students. We share lessons learned and recommendations from faculty and participants regarding decisions and facets of the program considered to be most influential in STEM teacher and leadership development. 
    more » « less
  2. The population of students in Puerto Rico that has enrolled in higher education within the last six years has been severely affected by a compound effect of the many major humanitarian crises, including a deteriorated economy since the 2006 Great Recession, Hurricanes Irma and Maria in 2017, earthquakes in 2019 and 2020, the ongoing COVID-19 pandemic since 2020, and Hurricane Fiona in 2022. To ensure that students can cope with the aftermath of these natural disasters, the following programs were conceived: The Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) and The Noyce Teacher Scholars Program – (NoTeS), all three programs are funded by the National Science Foundation. EECOS developed a support ecosystem that consists of three elements: academic support, socio-emotional support, and financial support. NoTeS. provides talented Hispanic low-socioeconomic bilingual undergraduate or recently graduated STEM majors and professionals up to two years of scholarship funding as well as academic and professional support as they complete the requirements to obtain teacher certification to become K-12 math and science teachers. This program seeks to increase the number of K-12 teachers with strong STEM content knowledge to fill the need for teachers in high-need school districts. RISE-UP was conceptualized to educate architecture and engineering students to work in interdisciplinary teams to provide resilient and sustainable design and construction solutions to infrastructure challenges. To date, EECOS has directly impacted XX students and graduated XXX students. NoTeS has helped nineteen scholars and ten affiliates (participants of the activities without the scholarship) partake. Eight of the nine alums scholars now work as math or science teachers in a high-needs school. RISE-UP has had 127 scholars who are enrolled or have completed the RISE-UP curricular sequence. This paper provides effective practices and a baseline characterization that universities can use to help students overcome the effects of natural disasters and promote student success using ecosystems of support that expand capabilities and opportunities, particularly for STEM scholars. 
    more » « less
  3. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  4. There is an ongoing shortage of STEM teachers in the United States, and the teaching profession consistently struggles to recruit a diverse body of teachers whose demographics match those of their students. The shortage of STEM teachers and the lack of diversity in the profession have negative implications for student success in STEM fields, particularly among underrepresented groups. We have developed a survey and collected data on student perceptions of the teaching profession at 46 Institutions of Higher Education (IHEs) across the country, including several Minority-Serving Institutions (MSIs). We have analyzed these data with respect to institution type to determine whether perceptions of the profession may be a factor in recruiting and retaining a diverse body of teachers. We found that perceptions generally do not differ greatly between MSIs and non-MSIs and that students at MSIs tend to have slightly more positive views than those at non-MSIs. We also found that some variation exists for individual institution types, particularly Historically Black Colleges and Universities (HBCUs) and Predominantly Black Institutions (PBIs). 
    more » « less
  5. A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement. 
    more » « less