skip to main content


Title: UAV Air-to-Ground Channel Characterization for mmWave Systems
Communication at mmWave bands carries critical importance for 5G wireless networks. In this paper, we study the characterization of mmWave air-to-ground (AG) channels for unmanned aerial vehicle (UAV) communications. In particular, we use ray tracing simulations using Remcom Wireless InSite software to study the behavior of AG mmWave bands at two different frequencies: 28 GHz and 60 GHz. Received signal strength (RSS) and root mean square delay spread (RMS-DS) of multipath components (MPCs) are analyzed for different UAV heights considering four different environments: urban, suburban, rural, and over sea. It is observed that the RSS mostly follows the two ray propagation model along the UAV flight path for higher altitudes. This two ray propagation model is affected by the presence of high rise scatterers in urban scenario. Moreover, we present details of a universal serial radio peripheral (USRP) based channel sounder that can be used for AG channel measurements for mmWave (60 GHz) UAV communications.  more » « less
Award ID(s):
1618692
NSF-PAR ID:
10042432
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Vehicular Technology Conference (VTC) workshop on 5G Millimeter-Wave Channel Measurement, Models, and Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of Millimeter-wave (mmWave) spectrum in cellular communications has recently attracted growing interest to support the expected massive increase in traffic demands. However, the high path-loss at mmWave frequencies poses severe challenges. In this paper, we analyze the potential coverage gains of using unmanned aerial vehicles (UAVs), as hovering relays, in integrated access and backhaul (IAB) mmWave cellular scenarios. Specifically, we utilize the WinProp software package, which employs ray tracing methodology, to study the propagation characteristics of outdoor mmWave channels at 30 and 60 GHz frequency bands in a Manhattan-like environment. In doing so, we propose the implementation of amplify-and-forward (AF) and decode-and-forward (DF) relaying mechanisms in the WinProp software. We show how the 3D deployment of UAVs can be defined based on the coverage ray tracing maps at access and backhaul links. Furthermore, we propose an adaptive UAV transmission power for the AF relaying. We demonstrate, with the aid of ray tracing simulations, the performance gains of the proposed relaying modes in terms of downlink coverage, and the received signal to interference and noise ratio (SINR). 
    more » « less
  2. null (Ed.)
    To address the needs of emerging bandwidth-intensive applications in 5G and beyond era, the millimeter-wave (mmWave) band with very large spectrum availability have been recognized as a promising choice for future wireless communications. In particular, IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly anticipated wireless local area network (WLAN) technology for supporting ultra-high-rate data transmissions. In this paper, we describe additions to the ns-3 802.11ad simulator that include 3D obstacle specifications, line-of-sight calculations, and a sparse cluster-based channel model, which allow researchers to study complex mmWave Wi-Fi network deployments under more realistic conditions. We also study the performance accuracy and simulation efficiency of the implemented statistical channel model as compared to a deterministic ray-tracing based channel model. Through extensive ns-3 simulations, the results show that the implemented channel model has the potential to achieve good accuracy in performance evaluation while improving simulation efficiency. We also provide a detailed parametric analysis on the statistical channel model, which yields insight on how to properly tune the model parameters to further improve performance accuracy. 
    more » « less
  3. Millimeter-wave (mmWave) with large spectrum available is considered as the most promising frequency band for future wireless communications. The IEEE 802.11ad and IEEE 802.11ay operating on 60 GHz mmWave are the two most expected wireless local area network (WLAN) technologies for ultra-high-speed communications. For the IEEE 802.11ay standard still under development, there are plenty of proposals from companies and researchers who are involved with the IEEE 802.11ay task group. In this survey, we conduct a comprehensive review on the medium access control layer (MAC) related issues for the IEEE 802.11ay, some cross-layer between physical layer (PHY) and MAC technologies are also included. We start with MAC related technologies in the IEEE 802.11ad and discuss design challenges on mmWave communications, leading to some MAC related technologies for the IEEE 802.11ay. We then elaborate on important design issues for IEEE 802.11ay. Specifically, we review the channel bonding and aggregation for the IEEE 802.11ay, and point out the major differences between the two technologies. Then, we describe channel access and channel allocation in the IEEE 802.11ay, including spatial sharing and interference mitigation technologies. After that, we present an in-depth survey on beamforming training (BFT), beam tracking, single-user multiple-input-multiple-output (SU-MIMO) beamforming and multi-user multiple-input-multiple-output (MU-MIMO) beamforming. Finally, we discuss some open design issues and future research directions for mmWave WLANs. We hope that this paper provides a good introduction to this exciting research area for future wireless systems. 
    more » « less
  4. null (Ed.)
    This paper provides an analysis of radio wave scattering for frequencies ranging from the microwave to the Terahertz band (e.g., 1 GHz - 1 THz), by studying the scattering power reradiated from various types of materials with different surface roughnesses. First, fundamentals of scattering and reflection are developed and explained for use in wireless mobile radio, and the effect of scattering on the reflection coefficient for rough surfaces is investigated. Received power is derived using two popular scattering models - the directive scattering (DS) model and the radar cross section (RCS) model through simulations over a wide range of frequencies, materials, and orientations for the two models, and measurements confirm the accuracy of the DS model at 140 GHz. This paper shows that scattering can become a prominent propagation mechanism as frequencies extend to millimeter-wave (mmWave) and beyond, but at other times can be treated like simple reflection. Knowledge of scattering effects is critical for appropriate and realistic channel models, which further support the development of massive multiple input-multiple output (MIMO) techniques, localization, ray tracing tool design, and imaging for future 5G and 6G wireless systems. 
    more » « less
  5. null (Ed.)
    Abstract Propagation models constitute a fundamental building block of wireless communications research. Before we build and operate real systems, we must understand the science of radio propagation, and develop channel models that both reflect the important propagation processes and allow a fair comparison of different systems. In the past five decades, wireless systems have gone through five generations, from supporting voice applications to enhanced mobile broadband. To meet the ever increasing data rate demands of wireless systems, frequency bands covering a wide range from 800 MHz to 100 GHz have been allocated for use. The standardization of these systems started in the early/mid 1980s in Europe by the European Telecommunications Standards Institute with the advent of Global System for Mobile Communications. This motivated the development of the first standardized propagation model by the European Cooperation in Science and Technology (COST) 207 working group. These standardization activities were continued and expanded for the third, fourth, and fifth generations of COST, as well as by the Third Generation Partnership Project, and the International Telecommnunication Union. This paper presents a historical overview of the standardized propagation models covering first to fifth-generation systems. In particular, we discuss the evolution and standardization of pathloss models, as well as large and small-scale fading parameters for single antenna and multiple antenna systems. Furthermore, we present insights into the progress of deterministic modelling across the five generations of systems, as well as discuss more advanced modelling components needed for the detailed simulations of millimeter-wave channels. A comprehensive bibliography at the end of the paper will aid the interested reader to dig deeper. 
    more » « less