skip to main content


Title: IEEE 802.11ay based mmWave WLANs: Design Challenges and Solutions
Millimeter-wave (mmWave) with large spectrum available is considered as the most promising frequency band for future wireless communications. The IEEE 802.11ad and IEEE 802.11ay operating on 60 GHz mmWave are the two most expected wireless local area network (WLAN) technologies for ultra-high-speed communications. For the IEEE 802.11ay standard still under development, there are plenty of proposals from companies and researchers who are involved with the IEEE 802.11ay task group. In this survey, we conduct a comprehensive review on the medium access control layer (MAC) related issues for the IEEE 802.11ay, some cross-layer between physical layer (PHY) and MAC technologies are also included. We start with MAC related technologies in the IEEE 802.11ad and discuss design challenges on mmWave communications, leading to some MAC related technologies for the IEEE 802.11ay. We then elaborate on important design issues for IEEE 802.11ay. Specifically, we review the channel bonding and aggregation for the IEEE 802.11ay, and point out the major differences between the two technologies. Then, we describe channel access and channel allocation in the IEEE 802.11ay, including spatial sharing and interference mitigation technologies. After that, we present an in-depth survey on beamforming training (BFT), beam tracking, single-user multiple-input-multiple-output (SU-MIMO) beamforming and multi-user multiple-input-multiple-output (MU-MIMO) beamforming. Finally, we discuss some open design issues and future research directions for mmWave WLANs. We hope that this paper provides a good introduction to this exciting research area for future wireless systems.  more » « less
Award ID(s):
1717736 1409797 1343356
NSF-PAR ID:
10072690
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Communications Surveys & Tutorials
ISSN:
1553-877X
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapidly increasing interest from various verticals for the upcoming 5th generation (5G) networks expect the network to support higher data rates and have an improved quality of service. This demand has been met so far by employing sophisticated transmission techniques including massive Multiple Input Multiple Output (MIMO), millimeter wave (mmWave) bands as well as bringing the computational power closer to the users via advanced baseband processing units at the base stations. Future evolution of the networks has also been assumed to open many new business horizons for the operators and the need of not only a resource efficient but also an energy efficient ecosystem has greatly been felt. The deployment of small cells has been envisioned as a promising answer for handling the massive heterogeneous traffic, but the adverse economic and environmental impacts cannot be neglected. Given that 10% of the world’s energy consumption is due to the Information and Communications Technology (ICT) industry, energy-efficiency has thus become one of the key performance indicators (KPI). Various avenues of optimization, game theory and machine learning have been investigated for enhancing power allocation for downlink and uplink channels, as well as other energy consumption/saving approaches. This paper surveys the recent works that address energy efficiency of the radio access as well as the core of wireless networks, and outlines related challenges and open issues. 
    more » « less
  2. The extremely high data rates provided by communications in the millimeter-length (mmWave) frequency bands can help address the unprecedented demands of next-generation wireless communications. However, atmospheric attenuation and high propagation loss severely limit the coverage of mmWave networks. To overcome these challenges, multi-input-multi-output (MIMO) provides beamforming capabilities and high-gain steer- able antennas to expand communication coverage at mmWave frequencies. The main contribution of this paper is the per- formance evaluation of mmWave communications on top of the recently released NR standard for 5G cellular networks. Furthermore, we compare the performance of NR with the 4G long-term evolution (LTE) standard on a highly realistic campus environment. We consider physical layer constraints such as transmit power, ambient noise, receiver noise figure, and practical antenna gain in both cases, and examine bitrate and area coverage as the criteria to benchmark the performance. We also show the impact of MIMO technology to improve the performance of the 5G NR cellular network. Our evaluation demonstrates that 5G NR provides on average 6.7 times bitrate improvement without remarkable coverage degradation. 
    more » « less
  3. Abstract—Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond. Index Terms—Millimeter-wave, terahertz, radio propagation, indoor office scenario, channel measurement, channel modeling, channel simulation, NYUSIM, 28 GHz, 140 GHz, 142 GHz, 5G, 6G. 
    more » « less
  4. null (Ed.)
    To address the needs of emerging bandwidth-intensive applications in 5G and beyond era, the millimeter-wave (mmWave) band with very large spectrum availability have been recognized as a promising choice for future wireless communications. In particular, IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly anticipated wireless local area network (WLAN) technology for supporting ultra-high-rate data transmissions. In this paper, we describe additions to the ns-3 802.11ad simulator that include 3D obstacle specifications, line-of-sight calculations, and a sparse cluster-based channel model, which allow researchers to study complex mmWave Wi-Fi network deployments under more realistic conditions. We also study the performance accuracy and simulation efficiency of the implemented statistical channel model as compared to a deterministic ray-tracing based channel model. Through extensive ns-3 simulations, the results show that the implemented channel model has the potential to achieve good accuracy in performance evaluation while improving simulation efficiency. We also provide a detailed parametric analysis on the statistical channel model, which yields insight on how to properly tune the model parameters to further improve performance accuracy. 
    more » « less
  5. null (Ed.)
    While millimeter-wave (mmWave) wireless has recently gained tremendous attention with the transition to 5G, developing a broadly accessible experimental infrastructure will allow the research community to make significant progress in this area. Hence, in this paper, we present the design and implementation of various programmable and open-access 28/60 GHz software-defined radios (SDRs), deployed in the PAWR COSMOS advanced wireless testbed. These programmable mmWave radios are based on the IBM 28 GHz 64-element dual-polarized phased array antenna module (PAAM) subsystem board and the Sivers IMA 60 GHz WiGig transceiver. These front ends are integrated with USRP SDRs or Xilinx RF-SoC boards, which provide baseband signal processing capabilities. Moreover, we present measurements of the TX/RX beamforming performance and example experiments (e.g., real-time channel sounding and RFNoC-based 802.11ad preamble detection), using the mmWave radios. Finally, we discuss ongoing enhancement and development efforts focusing on these radios. 
    more » « less