skip to main content

Title: Algorithm for searching and tracking an unknown and varying number of mobile targets using a limited FoV sensor
We study the problem of searching and tracking a collection of moving targets using a robot with a limited Field-of-View (FoV) sensor. The actual number of targets present in the environment is not known a priori. We propose a search and tracking framework based on the concept of Bayesian Random Finite Sets (RFSs). Specifically, we generalize the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter which was previously applied for only tracking problems to allow for simultaneous search and tracking. The proposed framework can extract individual target tracks as well as estimate the number and spatial density of the targets. We also show how to use Gaussian Process (GP) regression to extract and predict non-linear target trajectories in this framework. We demonstrate the efficacy of our techniques through representative simulations where we also compare the performance of two active control strategies.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
6246 to 6252
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations, the distribution of unknown objects in a search area is irregular, with objects are likely to distribute in clusters instead of evenly distributed. In this paper, we develop a novel distributed multi-robot multi-target tracking algorithm for effectively tracking clustered targets from noisy measurements. Our algorithm contains two major components. Firstly, both the instantaneous and cumulative target density are estimated, providing the best guess of current target states and long-term coarse distribution of clusters, respectively. Secondly, the power diagram is implemented in Lloyd’s algorithm to optimize task space assignment for each robot to trade-off between tracking detected targets in clusters and searching for potential targets outside clusters. We demonstrate the efficacy of our proposed method and show that our method outperforms of other candidates in tracking accuracy through a set of simulations. 
    more » « less
  2. This paper compares different distributed control approaches that enable a team of robots search for and track an unknown number of targets. The robots are equipped with sensors which have limited field of view (FoV) and are required to explore the environment. The team uses a distributed formulation of the Probability Hypothesis Density (PHD) filter to estimate the number and the position of the targets. The resulting target estimate is used to select the future search locations for each robot. This paper compares Lloyd’s algorithm, a traditional method for distributed search, with two typical stochastic optimization methods, Particle Swarm Optimization (PSO) and Simulated Annealing (SA). PSO and SA are traditionally used to find a single global maximum, therefore this paper describes novel formulations of PSO and SA to solve the problem of multi-target tracking. These new methods more effectively trade off between exploration and exploitation. Simulations demonstrate that the use of these stochastic optimization techniques improves coverage of the search space and reduces the error in the target estimates compared to the baseline approach. 
    more » « less
  3. This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking. 
    more » « less
  4. NA (Ed.)
    Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collisionfree paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework. 
    more » « less
  5. null (Ed.)
    In this paper an Unmanned Aerial Vehicles (UAVs) - enabled dynamic multi-target tracking and data collection framework is presented. Initially, a holistic reputation model is introduced to evaluate the targets' potential in offloading useful data to the UAVs. Based on this model, and taking into account UAVs and targets tracking and sensing characteristics, a dynamic intelligent matching between the UAVs and the targets is performed. In such a setting, the incentivization of the targets to perform the data offloading is based on an effort-based pricing that the UAVs offer to the targets. The emerging optimization problem towards determining each target's optimal amount of offloaded data and the corresponding effort-based price that the UAV offers to the target, is treated as a Stackelberg game between each target and the associated UAV. The properties of existence, uniqueness and convergence to the Stackelberg Equilibrium are proven. Detailed numerical results are presented highlighting the key operational features and the performance benefits of the proposed framework. 
    more » « less