skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Engineering Student Motivating Factors for Job Application and Selection.
There are over 100,000 engineering graduates from undergraduate programs annually within the United States. Students graduating from these programs pursue a variety of jobs, with only a subset being engineering positions. Why might an engineering student, after investing considerable resources in their engineering education, select a nonengineering job? What are the specific factors at work for engineering graduates in selecting their first professional position? This study seeks to identify recently graduated engineering students’ motivations in job applications and job selection, particularly as these motives vary by academic and demographic backgrounds. The data for this study come from survey responses of 315 currently employed individuals who were within one year post-graduation from their undergraduate engineering program at one of 27 different institutions across the United States. A mixed methods approach was used to understand the factors influencing their career decisions based on their open- and closed- ended responses to related survey questions. First, using emergent coding, respondents’ self-reported, open-ended descriptions of their job search process that led them to accept the offer for their current employed position were categorized. Then, their open-ended responses were compared to a close-ended, ranking question of the same type, with items that were derived from a question in the National Survey of Recent College Graduates (sponsored by NSF’s Division of Science Resources Studies). Finally, respondents’ background characteristics (e.g., socioeconomic status) and undergraduate experiences (e.g., participation in an internship) were analyzed in relation to their job search and job selection processes. Our findings reinforce that job selection is a complex process that often can be a source of anxiety and stress to students. The motivating factors for deciding which jobs to apply to, and which job to ultimately accept, vary for different students. By improving our understanding of student motivations during the job search process, employers can make adjustments to their offers in order to strengthen and diversify the engineering workforce. By knowing what motivates students, advisors can design services to support students in a successful transition from school-to-work. These findings also may be of use to students themselves, helping them see the variety of ways that engineering students pursue and consider job options.  more » « less
Award ID(s):
1636442
PAR ID:
10043001
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the American Society for Engineering Education Annual Conference, June 25-28. Columbus, OH.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As the field continues to grow, engineering education is continually challenged with finding engineering education research (EER) positions that align with the broad abilities and interests of its members. EER positions exist in engineering education departments, traditional engineering departments (e.g., mechanical, civil), and in non-degree granting programs (e.g., centers for teaching and learning, engineering programs). These positions vary across their emphasis on research, teaching, and service and provide access to different resources and mechanisms to impact engineering education. Given the range of positions available in EER and the emergence of new EER programs, it can be challenging for graduate students and postdocs to navigate the job search process and identify a position that aligns with their professional goals. The purpose of this research was to better understand the EER job market as it relates to what applicants (i.e., graduates and post-docs) experience as they navigate the job-search and decision-making process. For this study, we conducted interviews with seven transitioning first-year EER faculty members. These individuals were transitioning into various EER faculty positions (e.g. Lecturer, Teaching Fellow, Assistant Professor, Research Assistant Professor) with different backgrounds in EER based on their graduate training experiences which included established EER programs as well as traditional engineering departments with EER advisor(s). We asked questions that focused on the individual’s new faculty position, their perception of the weekly time requirements, their job search process, and factors that influenced their final decision of which job to select. Each interview was conducted by two graduate students and was then transcribed and verified for accuracy. Three faculty members performed holistic coding of the transcripts focused on three areas: EER position types, job search process, and job decision making process. The Qualifying Qualitative research Quality framework (Q3) was used as a guide throughout our data collection and analysis process to ensure reliability and trustworthiness of the data collected. Through our analysis process, we developed a visual representation that provides a guide to assist EER graduate students and postdocs with their job search process. The first figure captures the diversity of positions along with the types of institutions where these positions exist to provide a starting point for individuals on their job search process. The second figure includes a timeline to help capture the average time frames for different phases of the job search process. Factors associated with final decisions based on the interviews conducted are also outlined to provide areas of consideration for individuals undergoing this process in the future. This work provides insight to aspiring academics about the range of opportunities available to those with a background in EER and how they can pursue finding alignment between their interests and positions that are available. 
    more » « less
  2. Capstone design courses, an established component of undergraduate engineering curricula, offer students the opportunity to synthesize their prior engineering coursework and apply professional and technical skills towards projects with practical application. During this unique experience, capstone faculty enable mentored exploration, coaching students to navigate the design process to complete complex and open-ended projects. However, each capstone scope of work requires project specific knowledge and skills that capstone students need to independently research and comprehend. Findings from our study of recent graduates during their first year on the job suggest that self-directed learning isn’t just occurring in the capstone experience, but it is also an essential skill in professional workplaces. In this paper we share data regarding participants’ experiences relying on self-directed learning while working on their capstone projects and later in post-graduation environments. We consider the ways that capstone design educators can design course content and mentor students to help promote this critical skill and conclude by offering recommendations. 
    more » « less
  3. This work presents the first year of work on a project addressing the productive beginnings of engineering judgment in undergraduate engineering students. In particular, we discuss a new research question about how open-ended modeling problems (OEMPs), which engage students in engineering judgment, foster the growth of conceptual knowledge. Because OEMPs are open-ended with multiple answers, they are different from the typical well-defined “textbook” problems given in engineering science courses where students learn canonical mathematical models and apply relevant formulas to find a single correct answer. By looking at the conceptual gains that result from assigning an OEMP, we aim to convince other instructors to create and assign open-ended questions. More practice using engineering judgment will give students experience with engineering judgment before receiving their engineering degree. Ideally, this will increase the number of graduates prepared for real-world engineering application. 
    more » « less
  4. There is little empirical research that provides a broad understanding of graduates’ interests in industry and engineering job opportunities. This study aimed to analyze differences in industry participation between engineering majors, undergraduate engineering student participation in job fair events, and student hiring recruitment trends.A quantitative approach was used to address: RQ 1: How are the industry work opportunities different between different engineering majors at a large Midwest institution?; and RQ 2: How do job fair participants and hiring in engineering industry differ for BME students from other engineering majors at a large Midwest institution? The Ohio State University Department of Biomedical Engineering has observed lower hiring trends for undergraduate biomedical engineering students pursuing industry relative to other engineering majors. In this study, the number of companies interested in a major was different between majors. This makes it clear that companies present in each job fair have a higher preference for some major over others. Understanding if that difference is more prevalent of pre-major students or a different effect would require further study. Undergraduate student hiring was observed to be different between majors, but this has been previously reported (Nocera et al. 2018, Ortiz-Rosario et al. 2019). This study also found that recruitment-attendance ratios, a rough metric of yield, were significantly different between engineering majors. With better recruitment data, these ratios could indicate differences in the effectiveness of job fairs for different engineering majors. Future work will continue to search for factors that explain why there is a gap in BME industry hiring, and on ways to bridge that gap. 
    more » « less
  5. The overwhelming consensus in the scientific community is that anthropogenic climate change will irreversibly affect future generations. Engineering professionals who design and construct our built environment can protect society against the effects of global warming through implementation of building strategies that reduce climate changing emissions. There is little research to assess if students who intend to pursue careers in the design and construction of our built environment hope to address such important environmental and societal challenges. To advance understanding, a survey instrument was developed and validated to measure undergraduate engineering students’ climate change literacy, career motivations, and agency to address climate change in their career. Preliminary results compare responses of engineering students intending to pursue a career in civil and construction industries to those of engineering students intending to pursue other engineering careers. The results indicate that civil and construction engineering students are more likely to take sustainability courses and learn about climate change in the classroom, but they do not excel above other engineers in their knowledge of climate science. The educational gap in engineering sustainability courses must be closed to ensure those who will design and construct our built environment are properly equipped to succeed in the sustainability-related careers they desire. 
    more » « less