skip to main content


Title: Exploring the Relationship between Mindfulness and Innovation in Engineering Students.
An open, receptive, and curious (mindful) mindset is often cited as important in innovation. Yet, engineering education typically focuses on narrow analytical training at the expense of fostering expansive thinking. To specifically explore the relationship between a mindful attitude (open, receptive, curious) and innovation, we examined the relationship between dispositional mindfulness and innovation self-efficacy in a sample of 1,460 engineering students and recent graduates who completed the Engineering Majors Survey. Using social cognitive theory to frame our analysis, we found that a mindful attitude is correlated with innovation self-efficacy and that students with a highly mindful attitude tend to participate in learning experiences related to design and innovation. These results lay the groundwork for how mindfulness may promote foundational skills for successful entrepreneurship such as innovation, learning, and motivation.  more » « less
Award ID(s):
1636442
NSF-PAR ID:
10043005
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the American Society for Engineering Education Annual Conference, June 25-28. Columbus, OH.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines the relationship between participation in extracurricular college activities and its possible impact on students’ career interests in entrepreneurship and innovation. This work draws from the Engineering Majors Survey (EMS), focusing on innovation self-efficacy and how it may be impacted by participation in various extracurricular college activities. The term self-efficacy as developed by Albert Bandura is defined as “people’s judgment of their capabilities to organize and execute courses of action required to attain designated types of performances” (Bandura, 1986, p.391). Innovation self-efficacy is a variable consisting of six items that correspond to Dyer’s five discovery skills seen as important for innovative behavior. In order to investigate the relationship between participation in certain activities and innovation self-efficacy, the 20 activities identified in the EMS survey were grouped thematically according to their relevance to entrepreneurship-related topics. Students were divided into two groups using K-means cluster analysis according to their innovation selfefficacy (ISE.6) score. Cluster one (C1) contained the students with higher ISE.6 scores, Cluster two (C2) included the students with lower innovation self-efficacy scores. This preliminary research focused on descriptive analyses while also looking at different background characteristics such as gender, academic status and underrepresented minority status (URM). The results show that students in C1 (high ISE.6) have significantly greater interest in starting an organization (78.1%) in comparison to C2 students (21.9%) (X²=81.11, p=.000, Cramer’s V= .124). At the same time, male students reported significantly higher ISE.6 scores (M=66.70, SD=17.53) than female students (M=66.70, SD=17.53) t(5192)=-5.220 p=.000 and stronger intentions to start an organization than female students (15% and 6.1 % respectively). Cluster affiliation representing innovation self-efficacy as well as gender seems to play a role when looking at career interest in entrepreneurship. According to Social Cognitive Career Theory, self-efficacy is influenced by learning experiences. In this work activities referring to hands-on activities in entrepreneurship and innovation are highly correlated with ISE.6 (r=.206, p=.000), followed by non-hands-on exposure to entrepreneurship and innovation. At the same time, students in C1 participated almost twice as often in hands-on activities in entrepreneurship and innovation (28.6%) as compared to students in C2 (15.2%). Interestingly in C1, there were no gender differences in participation in hands-on activities in entrepreneurship and innovation. Overall, female students (M=4.66, SD=2.5) participated in significantly more activities than male students (M=3.9, SD=2.64), t(5192)=9.65 p=.000. All in all, these results reveal interesting insights into the potential benefits of taking part in innovation and entrepreneurship-related activities and their impact on students’ innovation self-efficacy and interests in corresponding careers. 
    more » « less
  2. This research to practice full paper presents the work of an academic-industry research partnership to explore the internship experiences of summer interns at a large global engineering company. Engineering internships give students the opportunity to apply the engineering skills they have been learning to real products and can have a high impact on innovation and engineering task self-efficacy. The relationship between internships and innovation and engineering task selfefficacy matters because self-efficacy is an important predictor of major and career choice. Innovation interests is another measure that measures the individual’s interest in innovative behaviors, unlike ISE which measures their confidence in practicing these behaviors. This paper focuses on understanding the relationship between internship work assignment and supervisor interaction and innovation interests. Furthermore, the relationship between the internship experience and the intern’s likelihood of accepting a job offer from the same company is explored. A survey administered to engineering interns (N = 115) at the end of their summer 2017 internship at a large global engineering company forms the main dataset for this work. Keywords—Engineering Education Research, Industrial Partnerships and Collaborations, Engineering Education Research, Innovation and Creativity 
    more » « less
  3. The Engineer of 2020 recognizes creativity, invention, and innovation as indispensable qualities for engineering. It may be argued, however, that traditional engineering programs do not inherently foster these qualities in engineering students, and with limited resources and time, adding innovation-fostering experiences to already over-packed curricula may seem like an insurmountable challenge. Longitudinal studies carried out by the authors have shown that makerspaces can foster improvement in engineering students’ design self-efficacy, and three-part phenomenological interviews have shown that students in makerspaces engage in non-linear, open-ended, student-driven projects that require hands-on designing, prototyping, modeling, and testing. These studies provide initial evidence that makerspaces may have the potential to enhance students’ deep learning of engineering and engineering design. To arrive at the more complex cultural factors related to student involvement and success related to participation in makerspaces, we describe the processes of ethnographic methodologies we are using to study the intersections between the structure of an engineering curriculum and the learning that occurs outside of the classroom in makerspaces. Ethnographic methodologies of participant observation, unstructured and semi-structured interviews enable exploration of how students (1) interact within and construct the culture of makerspaces; (2) talk about maker space culture as important to their commitment to engineering; (3) learn within maker spaces; and (4) choose the type and direction of projects. This paper specifically describes the ethnographic methodologies used to track four different undergraduate student teams participating in a two-year senior capstone project, as well as three different student teams participating in a sophomore design class in which they use makerspaces to build a human powered vehicle for a client with a disability. Initial interpretations are presented that inform our understanding of the complex cultural system in which learning occurs, ultimately helping us to consider ways to improve university makerspaces. 
    more » « less
  4. Engineering has a long history of developing solutions to meet societal needs, and humanity currently faces many and varied societal challenges. Who are the engineering students motivated to address such challenges? This study explores a sample of 5,819 undergraduate engineering students from a survey administered in 2015 to a nationally representative set of twenty-seven U.S. engineering schools. The survey was developed to study the background, learning experiences, academic activities and proximal influences that motivate an engineering undergraduate student to pursue innovative work post-graduation. As part of this survey students indicated their interest in pursuing work that addresses societal challenges. A step-wise regression analysis is used to predict interest in societal impact and by contrast interest in financial potential with respect to 71 demographic, background and academic experience variables. The results confirm previous studies – a large majority of engineering undergraduates are interested in impact-driven work with an over-representation of female and under-represented minority students. This study sheds new light on the background and academic experiences that predict interest in impact-driven as compared to financially-driven engineering work. It is found that experiences promoting a service ethic and broadening oneself outside of engineering are important predictors of interest in impact-driven work. What is less expected is the significant importance of innovation interests and innovation self-efficacy for engineering students interested in creating societal impact. Deeper exploration reveals that certain academic experiences and proximal influences have a direct and significant effect on a student’s interest in impact-driven work, and this relationship is strengthened by the partial mediation of innovation self-efficacy. As such, this study suggests that the development of innovation self-efficacy is important in cultivating engineering students who are interested in impact-driven work, and to a lesser extent, financially-driven work. These findings have implications for how engineering educators and employers attract, inspire, and equip future engineers, particularly female and under-represented minority students. 
    more » « less
  5. This research paper presents the results of a study that uses multivariate models to explore the relationships between participation in learning experiences, innovation self-efficacy, and engineering task self-efficacy. Findings show that many engineering students participated in learning experiences that are typically associated with engineering education, such as taking a shop class or engineering class in high school (47%), taking a computer science (81%) or design/prototyping (72%) class as an undergraduate, working in an engineering environment as an intern (56%), or attending a career related event during college (75%). Somewhat surprisingly, given the rigors of an engineering curriculum, a significant number of students participated in an art, dance, music, theater, or creative writing class (55%), taken a class on leadership topics (47%), and/or participated in student clubs outside of engineering (44%) during college. There also were important differences in rates of participation by gender, underrepresented racial/ethnic minority status, and first generation college student status. Overall prediction of engineering task self-efficacy and innovation self-efficacy was relatively low, with a model fit of these learning experiences predicting engineering task self-efficacy at (adjusted r2 of) .200 and .163 for innovation self-efficacy. Certain patterns emerged when the learning experiences were sorted by Bandura’s Sources of Self-Efficacy. For engineering task self-efficacy, higher participation in engineering mastery and vicarious engineering experiences was associated with higher engineering task self-efficacy ratings. For the development of innovation self-efficacy, a broader range of experiences beyond engineering experiences was important. There was a strong foundation of engineering mastery experiences in the innovation self-efficacy model; however, broadening experiences beyond engineering, particularly in the area of leadership experiences, may be a factor in innovation selfefficacy. These results provide a foundation for future longitudinal work probing specific types of learning experiences that shape engineering students’ innovation goals. They also set the stage for comparative models of students’ goals around highly technical engineering work, which allows us to understand more deeply how “innovation” and “engineering” come together in the engineering student experience. 
    more » « less