We have proposed an effective metasurface design to accomplish the cloaking of equilateral patch antennas and their array configuration. As such, we have exploited the concept of electromagnetic invisibility, employing the mantle cloaking technique with the intention to eliminate the destructive interference ensuing between two distinct triangular patches situated in a very congested arrangement (sub-wavelength separation is maintained between the patch elements). Based on the numerous simulation results, we demonstrate that the implementation of the planar coated metasurface cloaks onto the patch antenna surfaces compels them to become invisible to each other, at the intended frequencies. In effect, an individual antenna element does not sense the presence of the other, in spite of being in a rather close vicinity. We also exhibit that the cloaks successfully reinstate the radiation attributes of each antenna in such a way that it emulates its respective performance in an isolated environment. Moreover, we have extended the cloak design to an interleaved one-dimensional array of the two patch antennas, and it is shown that the coated metasurfaces assure the efficient performance of each array in terms of their matching as well as radiation characteristics, which in turn, enables them to radiate independently for various beam-scanning angles.
more »
« less
Energy efficient switched parasitic array antenna for 5G networks and IoT
Abstract: This paper includes design and implementation result of an adaptive beam forming antenna for upcoming 5G and Internet of Things (IoT). Switched parasitic array antennas are low cost, small sized and compact circular array antennas that steer beam in a desired direction by variation in switching pattern of parasitic elements. The proposed antenna design has an active center element, which is surrounded by several symmetrically placed parasitic elements. The designed antenna has a gain of 8 dB and is capable of 360 degrees beam steering in steps of 60 degrees each. Simulations are validated with results of the fabricated antenna. Antenna beam is steered by controlling parasitic elements. Future application of Electronically Steerable Parasitic Array Radiator (ESPAR) antennas and switched parasitic array antennas in next generation communication networks and methods for reducing size of the antenna are also highlighted.
more »
« less
- Award ID(s):
- 1642865
- PAR ID:
- 10043844
- Date Published:
- Journal Name:
- IEEE Antennas & Propagation Conference (LAPC), 2016 Loughborough
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper.more » « less
-
This paper presents a compact phased-array antenna for efficient and high-gain millimeter-wave-based 3D beam steering applications. The proposed antenna array consists of 2 × 2 unit cells and each unit cell is a sub-array comprising of 2 × 2 patch elements connected to microstrip lines that are co-fed by a single coaxial cable. Two 45° phase shifting lines are incorporated in each sub-array to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna are 24 × 24 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 58.4 GHz with an operational bandwidth from 50.1 GHz to 77.5 GHz along with a high gain of 26.8 dBi. The array exhibits a maximum beam steering range of 105° in the elevation plane and 195° in the azimuth plane with a gain variation less than 0.9 dBi.more » « less
-
Abstract A novel approach to linear array antennas with adaptive inter-element spacing is presented for the first time. The main idea is based upon electronically displacing the phase center location of the antenna elements, which determine their relative coordinates in the array configuration. This is realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase center location can be displaced from its physical center by simultaneously exciting two modes. The direction and the amount of displacement is controlled by the amplitude and phase of the modes at the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels, position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling the array performance in emerging wireless communication systems and radars.more » « less
-
Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error.more » « less
An official website of the United States government

