skip to main content


Title: Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study: Accurate Estimation of Anisotropic Material Parameters by MRE
NSF-PAR ID:
10044066
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
78
Issue:
6
ISSN:
0740-3194
Page Range / eLocation ID:
2360 to 2372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data. 
    more » « less
  2. This paper proposes an iterative method of estimating power system forced oscillation (FO) amplitude, frequency, phase, and start/stop times from measured data. It combines three algorithms with favorable asymptotic statistical properties: a periodogram-based iterative frequency estimator, a Discrete-Time Fourier Transform (DTFT)-based method of estimating amplitude and phase, and a changepoint detection (CPD) method for estimating the FO start and stop samples. Each of these have been shown in the literature to be approximate maximum likelihood estimators (MLE), meaning that for large enough sample size or signal-to-noise ratio (SNR), they can be unbiased and reach the Cramer-Rao Lower Bound in variance. The proposed method is shown through Monte Carlo simulations of a low-order model of the Western Electricity Coordinating Council (WECC) power system to achieve statistical efficiency for low SNR values. The proposed method is validated with data measured from the January 11, 2019 US Eastern Interconnection (EI) FO event. It is shown to accurately extract the FO parameters and remove electromechanical mode meter bias, even with a time-varying FO amplitude. 
    more » « less
  3. Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue. 
    more » « less
  4. Abstract

    The conformation in solution of monocrotaline, a pyrrolizidine alkaloid presenting an eleven‐membered macrocyclic diester ring, has been investigated using a combination of isotropic and anisotropic nuclear magnetic resonance parameters measured in four solvents of different polarity (D2O, DMSO‐d6, CDCl3, and C6D6). Anisotropic nuclear magnetic resonance parameters were measured in different alignment media, based on their compatibility with the solvent of interest: cromoglycate liquid crystal solution was used for D2O, whereas a poly (methyl methacrylate) polymer gel was chosen for CDCl3and C6D6, and a poly (hydroxyethyl methacrylate) gel for DMSO‐d6. Whereas the pyrrolizidine ring shows anE6exo‐puckered conformation in all of the solvents, the macrocyclic eleven‐membered ring adopts different populations ofsyn‐parallel andanti‐parallel relative orientation of the carbonyl groups according to the polarity of the solvent.

     
    more » « less