skip to main content


Title: Development of a Polar Stratospheric Cloud Model Within the Community Earth System Model: Assessment of 2010 Antarctic Winter: Modeling of Polar Stratospheric Clouds
Award ID(s):
1643701
NSF-PAR ID:
10044119
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
122
Issue:
19
ISSN:
2169-897X
Page Range / eLocation ID:
10,418 to 10,438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August and mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first-ever-observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ∼50% in the midstratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-1 activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the southern annular mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical eastern Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skillfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July. 
    more » « less
  2. Abstract. Scattering codes are used to study the optical properties of polar stratospheric clouds (PSCs). Particle backscattering and depolarization coefficients can be computed with available scattering codes once the particle size distribution (PSD) is known and a suitable refractive index is assumed. However, PSCs often appear as external mixtures of supercooled ternary solution (STS) droplets, solid nitric acid trihydrate (NAT) and possibly ice particles, making the assumption of a single refractive index and a single morphology to model the scatterers questionable.Here we consider a set of 15 coincident measurements of PSCs above McMurdo Station, Antarctica, using ground-based lidar, a balloon-borne optical particle counter (OPC) and in situ observations taken by a laser backscattersonde and OPC during four balloon stratospheric flights from Kiruna, Sweden. This unique dataset of microphysical and optical observations allows us to test the performances of optical scattering models when both spherical and aspherical scatterers of different composition and, possibly, shapes are present. We consider particles as STS if their radius is below a certain threshold value Rth and NAT or possibly ice if it is above it. The refractive indices are assumed known from the literature. Mie scattering is used for the STS, assumed spherical. Scattering from NAT particles, considered spheroids of different aspect ratio (AR), is treated with T-matrix results where applicable. The geometric-optics–integral-equation approach is used whenever the particle size parameter is too large to allow for a convergence of the T-matrix method.The parameters Rth and AR of our model have been varied between 0.1 and 2 µm and between 0.3 and 3, respectively, and the calculated backscattering coefficient and depolarization were compared with the observed ones. The best agreement was found for Rth between 0.5 and 0.8 µm and for AR less than 0.55 and greater than 1.5.To further constrain the variability of AR within the identified intervals, we have sought an agreement with the experimental data by varying AR on a case-by-case basis and further optimizing the agreement by a proper choice of AR smaller than 0.55 and greater than 1.5 and Rth within the interval 0.5 and 0.8 µm. The ARs identified in this way cluster around the values 0.5 and 2.5.The comparison of the calculations with the measurements is presented and discussed. The results of this work help to set limits to the variability of the dimensions and asphericity of PSC solid particles, within the limits of applicability of our model based on the T-matrix theory of scattering and on assumptions on a common particle shape in a PSD and a common threshold radius for all the PSDs. 
    more » « less
  3. Abstract. A comparison of polar stratospheric cloud (PSC) occurrence from 2006 to2010 is presented, as observed from the ground-based lidar station at McMurdo(Antarctica) and by the satellite-borne CALIOP lidar (Cloud-Aerosol Lidarwith Orthogonal Polarization) measuring over McMurdo. McMurdo (Antarctica) isone of the primary lidar stations for aerosol measurements of the NDACC (Network forDetection of Atmospheric Climate Change). The ground-based observations havebeen classified with an algorithm derived from the recent v2 detection andclassification scheme, used to classify PSCs observed by CALIOP.

    A statistical approach has been used to compare ground-based and satellite-based observations, since point-to-point comparison is often troublesome dueto the intrinsic differences in the observation geometries and the imperfectoverlap of the observed areas.

    A comparison of space-borne lidar observations and a selection of simulationsobtained from chemistry–climate models (CCMs) has been made by using a series ofquantitative diagnostics based on the statistical occurrence of different PSCtypes. The distribution of PSCs over Antarctica, calculated by severalCCMVal-2 and CCMI chemistry–climate models has been compared with the PSCcoverage observed by the satellite-borne CALIOP lidar. The use of severaldiagnostic tools, including the temperature dependence of the PSCoccurrences, evidences the merits and flaws of the different models. Thediagnostic methods have been defined to overcome (at least partially) thepossible differences due to the resolution of the models and to identifydifferences due to microphysics (e.g., the dependence of PSC occurrence onTTNAT).

    A significant temperature bias of most models has been observed, as well as alimited ability to reproduce the longitudinal variations in PSC occurrencesobserved by CALIOP. In particular, a strong temperature bias has been observedin CCMVal-2 models with a strong impact on PSC formation. The WACCM-CCMI(Whole Atmosphere Community Climate Model – Chemistry-Climate ModelInitiative) model compares rather well with the CALIOP observations, althougha temperature bias is still present.

     
    more » « less