skip to main content


Title: Platinum‐Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface‐Diffusion‐Assisted, Solid‐State Oriented Attachment
Abstract

Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton‐exchange membrane fuel cells. Based on a generic solid‐state reaction, this study reports a modified hydrogen‐assisted, gas‐phase synthesis for facile, scalable production of surfactant‐free, thin, platinum‐based nanowire‐network electrocatalysts. The free‐standing platinum and platinum–nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate‐materials‐supported platinum‐based nanowires are obtained, which paves the way to practical application as a next‐generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free‐standing platinum nanowires form in the solid state via metal‐surface‐diffusion‐assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas‐molecular‐adsorbate‐modified growth in catalyst preparation.

 
more » « less
NSF-PAR ID:
10044968
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
29
Issue:
46
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.

     
    more » « less
  2. Abstract

    Finding a platinum‐free cathode catalyst that effectively models the oxygen reduction reaction (ORR) of a proton‐exchange membrane (PEM) fuel cell cathode better than the current commercial Pt/C catalyst has been a major shortcoming in fuel cell technology. Overall, a promising platinum‐free cathode catalyst must offer great ORR activity, ORR selectivity, and acid stability. Due to their enticing ORR activity and selectivity to the preferred four‐electron ORR pathway, the possible dissolution reactions and oxygen‐intermediate reactions of iron phthalocyanine monolayer supported on a pristine graphene (GFePc) and boron‐doped graphene substrate (BGFePc) have been studied to determine the stability as a function of potential and pH through spin‐polarized density functional theory (DFT) calculations at both infinitesimally low (10−9 m) and 1 mFe2+/Fe3+ionic concentrations. BGFePc offers higher stability in both concentrations than GFePc. In both cases, the oxygen‐intermediates are more stable than the bare catalytic surface due to the metal d‐band center shifting further away from the Fermi level in the valence band state (higher energy of antibonding). Moreover, at an Fe2+ionic concentration, both catalysts would be stable in the potential and pH regions at the operating conditions of rotating disk electrode (RDE) experiments and PEM fuel cells.

     
    more » « less
  3. Abstract

    Platinum multipods are attractive for catalytic and electrocatalytic applications owing to their highly open, branched structure and thus high specific surface area. A number of methods have been reported for the synthesis of Pt multipods, but they are all limited in terms of throughput due to the use of batch reactors. Here we report the use of a fluidic device for the continuous and scalable synthesis of Pt multipods with sizes controlled in the ranges of 3–5 nm and 2–3 nm for the length and width, respectively, of the branched arms. The facile protocol involves the use ofas a precursor to Pt and oleylamine as a solvent, surfactant, and temperature‐dependent reductant. When a solution of these two components is pumped into the polytetrafluoroethylene tube immersed in an oil bath and held at 180 °C, Pt multipods are formed through fast autocatalytic surface growth and small particles attachment. Compared with the batch‐based synthesis, the throughput of the production in the flow system can readily be increased to 17 mg of Pt per hour while retaining a tight control over the quality of the products. When supported on carbon, the Pt multipods exhibit enhanced activity toward oxygen reduction relative to the commercial Pt/C catalyst.

     
    more » « less
  4. null (Ed.)
    Oxygen reduction reaction (ORR) plays an important role in dictating the performance of various electrochemical energy technologies. As platinum nanoparticles have served as the catalysts of choice towards ORR, minimizing the cost of the catalysts by diminishing the platinum nanoparticle size has become a critical route to advancing the technological development. Herein, first-principle calculations show that carbon-supported Pt 9 clusters represent the threshold domain size, and the ORR activity can be significantly improved by doping of adjacent cobalt atoms. This is confirmed experimentally, where platinum and cobalt are dispersed in nitrogen-doped carbon nanowires in varied forms, single atoms, few-atom clusters, and nanoparticles, depending on the initial feeds. The sample consisting primarily of Pt 2~7 clusters doped with atomic Co species exhibits the best mass activity among the series, with a current density of 4.16   A   mg Pt − 1 at +0.85 V vs. RHE that is almost 50 times higher than that of commercial Pt/C. 
    more » « less
  5. Abstract Among the multi-metallic nanocatalysts, Pt-based alloy nanocrystals (NCs) have demonstrated promising performance in fuel cells and water electrolyzers. Herein, we demonstrate a facile colloidal synthesis of monodisperse trimetallic Pt–Fe–Ni alloy NCs through a co-reduction of metal precursors. The as-synthesized ternary NCs exhibit superior mass and specific activities toward oxygen reduction reaction (ORR), which are ∼2.8 and 5.6 times as high as those of the benchmark Pt/C catalyst, respectively. The ORR activity of the carbon-supported Pt–Fe–Ni nanocatalyst is persistently retained after the durability test. Owing to the incorporation of Fe and Ni atoms into the Pt lattice, the as-prepared trimetallic Pt-alloy electrocatalyst also manifestly enhances the electrochemical activity and durability toward the oxygen evolution reaction with a reduced overpotential when compared with that of the benchmark Pt/C (△ η = 0.20 V, at 10 mA cm −2 ). This synthetic strategy paves the way for improving the reactivity for a broad range of electrocatalytic applications. 
    more » « less