1-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study 2-parameter persistence modules induced by bi-filtration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules. We show that this vector representation is 1-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of 1-parameter and 2-parameter persistence modules. Further, we augment GNNs with GRIL features and observe an increase in performance indicating that GRIL can capture additional features enriching GNNs. We make the complete code for the proposed method available at https://github.com/soham0209/mpml-graph.
more »
« less
Persistence Images: A Stable Vector Representation of Persistent Homology
Many data sets can be viewed as a noisy sampling of an underlying space, and tools from topological data analysis can characterize this structure for the purpose of knowledge discovery. One such tool is persistent homology, which provides a multiscale description of the homological features within a data set. A useful representation of this homological information is a persistence diagram (PD). Efforts have been made to map PDs into spaces with additional structure valuable to machine learning tasks. We convert a PD to a finite dimensional vector representation which we call a persistence image (PI), and prove the stability of this transformation with respect to small perturbations in the inputs. The discriminatory power of PIs is compared against existing methods, showing significant performance gains. We explore the use of PIs with vector-based machine learning tools, such as linear sparse support vector machines, which identify features containing discriminating topological information. Finally, high accuracy inference of parameter values from the dynamic output of a discrete dynamical system (the linked twist map) and a partial differential equation (the anisotropic Kuramoto-Sivashinsky equation) provide a novel application of the discriminatory power of PIs.
more »
« less
- Award ID(s):
- 1633830
- PAR ID:
- 10045396
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 18
- ISSN:
- 1533-7928
- Page Range / eLocation ID:
- 1-35
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the field of Topological Data Analysis continues to show success in theory and in applications, there has been increasing interest in using tools from this field with methods for machine learning. Using persistent homology, specifically persistence diagrams, as inputs to machine learning techniques requires some mathematical creativity. The space of persistence diagrams does not have the desirable properties for machine learning, thus methods such as kernel methods and vectorization methods have been developed. One such featurization of persistence diagrams by Perea, Munch and Khasawneh uses continuous, compactly supported functions, referred to as "template functions," which results in a stable vector representation of the persistence diagram. In this paper, we provide a method of adaptively partitioning persistence diagrams to improve these featurizations based on localized information in the diagrams. Additionally, we provide a framework to adaptively select parameters required for the template functions in order to best utilize the partitioning method. We present results for application to example data sets comparing classification results between template function featurizations with and without partitioning, in addition to other methods from the literature.more » « less
-
Recently a new feature representation framework based on a topological tool called persistent homology (and its persistence diagram summary) has gained much momentum. A series of methods have been developed to map a persistence diagram to a vector representation so as to facilitate the downstream use of machine learning tools. In these approaches, the importance (weight) of different persistence features are usually pre-set. However often in practice, the choice of the weight-functions hould depend on the nature of the specific data at hand. It is thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence summaries, as well as an optimization framework to learn the weight (and thus kernel). We apply the learned kernel to the challenging task of graph classification, and show that our WKPI-based classification framework obtains similar or (sometimes significantly) better results than the best results from a range of previous graph classification frameworks on benchmark datasets.more » « less
-
The persistence diagram (PD) is an important tool in topological data analysis for encoding an abstract representation of the homology of a shape at different scales. Different vectorizations of PD summary are commonly used in machine learning applications, however distances between vectorized persistence summaries may differ greatly from the distances between the original PDs. Surprisingly, no research has been carried out in this area before. In this work we compare distances between PDs and between different commonly used vectorizations. Our results give new insights into comparing vectorized persistence summaries and can be used to design better feature-based learning models based on PDsmore » « less
-
Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The standard homology theory is based on a differential rule for the boundary operator that satisfies [Formula: see text] = 0. Our recent work has extended this rule by employing Mayer homology with generalized differentials that satisfy [Formula: see text] = 0 for [Formula: see text] 2, leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analyses in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities.more » « less
An official website of the United States government

