Composite Estimation for Single-Index Models with Responses Subject to Detection Limits: Composite estimation for SIM with DLs
- Award ID(s):
- 1712760
- PAR ID:
- 10046318
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Scandinavian Journal of Statistics
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 0303-6898
- Page Range / eLocation ID:
- 444 to 464
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
There is tremendous interest in precision medicine as a means to improve patient out- comes by tailoring treatment to individual characteristics. An individualized treatment rule formalizes precision medicine as a map from patient information to a recommended treatment. A treatment rule is defined to be optimal if it maximizes the mean of a scalar outcome in a population of interest, e.g., symptom reduction. However, clinical and intervention scientists often seek to balance multiple and possibly competing outcomes, e.g., symptom reduction and the risk of an adverse event. One approach to precision medicine in this setting is to elicit a composite outcome which balances all competing outcomes; unfortunately, eliciting a composite outcome directly from patients is difficult without a high-quality instrument, and an expert-derived composite outcome may not account for heterogeneity in patient preferences. We propose a new paradigm for the study of precision medicine using observational data that relies solely on the assumption that clinicians are approximately (i.e., imperfectly) making decisions to maximize individual patient utility. Estimated composite outcomes are subsequently used to construct an estimator of an individualized treatment rule which maximizes the mean of patient-specific composite out- comes. The estimated composite outcomes and estimated optimal individualized treatment rule provide new insights into patient preference heterogeneity, clinician behavior, and the value of precision medicine in a given domain. We derive inference procedures for the pro- posed estimators under mild conditions and demonstrate their finite sample performance through a suite of simulation experiments and an illustrative application to data from a study of bipolar depression.more » « less
-
Epstein, Michael P. (Ed.)Genetic and environmental covariances between pairs of complex traits are important quantitative measurements that characterize their shared genetic and environmental architectures. Accurate estimation of genetic and environmental covariances in genome-wide association studies (GWASs) can help us identify common genetic and environmental factors associated with both traits and facilitate the investigation of their causal relationship. Genetic and environmental covariances are often modeled through multivariate linear mixed models. Existing algorithms for covariance estimation include the traditional restricted maximum likelihood (REML) method and the recent method of moments (MoM). Compared to REML, MoM approaches are computationally efficient and require only GWAS summary statistics. However, MoM approaches can be statistically inefficient, often yielding inaccurate covariance estimates. In addition, existing MoM approaches have so far focused on estimating genetic covariance and have largely ignored environmental covariance estimation. Here we introduce a new computational method, GECKO, for estimating both genetic and environmental covariances, that improves the estimation accuracy of MoM while keeping computation in check. GECKO is based on composite likelihood, relies on only summary statistics for scalable computation, provides accurate genetic and environmental covariance estimates across a range of scenarios, and can accommodate SNP annotation stratified covariance estimation. We illustrate the benefits of GECKO through simulations and applications on analyzing 22 traits from five large-scale GWASs. In the real data applications, GECKO identified 50 significant genetic covariances among analyzed trait pairs, resulting in a twofold power gain compared to the previous MoM method LDSC. In addition, GECKO identified 20 significant environmental covariances. The ability of GECKO to estimate environmental covariance in addition to genetic covariance helps us reveal strong positive correlation between the genetic and environmental covariance estimates across trait pairs, suggesting that common pathways may underlie the shared genetic and environmental architectures between traits.more » « less
An official website of the United States government
