skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical effects of habitat‐forming species override latitudinal trends in temperature
Abstract Latitudinal and elevational temperature gradients (LTGandETG) play central roles in biogeographical theory, underpinning predictions of large‐scale patterns in organismal thermal stress, species' ranges and distributional responses to climate change. Yet an enormous fraction of Earth's taxa live exclusively in habitats where foundation species modify temperatures. We examine little‐explored implications of this widespread trend using a classic model system for understanding heat stresses – rocky intertidal shores. Through integrated field measurements and laboratory trials, we demonstrate that thermal buffering by centimetre‐thick mussel and seaweed beds eliminates differences in stress‐inducing high temperatures and associated mortality risk that would otherwise arise over 14° of latitude and ~ 1 m of shore elevation. These results reveal the extent to which physical effects of habitat‐formers can overwhelm broad‐scale thermal trends, suggesting a need to re‐evaluate climate change predictions for many species. Notably, inhabitant populations may exhibit deceptive resilience to warming until refuge‐forming taxa become imperiled.  more » « less
Award ID(s):
1636191
PAR ID:
10047041
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
21
Issue:
2
ISSN:
1461-023X
Page Range / eLocation ID:
p. 190-196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material. 
    more » « less
  2. ABSTRACT Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population‐level variation in sensitivity and adaptive capacity. Here, we address the question of local adaptation to temperature and the genetic basis of thermal tolerance in two stream frogs (Ascaphus trueiandA. montanus). Building on previous physiological and temperature data, we used whole‐genome resequencing of tadpoles from four sites spanning temperature gradients in each species to test for signatures of local adaptation. To support these analyses, we developed the first annotated reference genome forA. truei. We then expanded the geographic scope of our analysis using targeted capture at an additional 11 sites per species. We found evidence of local adaptation to temperature based on physiological and genomic data inA. montanusand genomic data inA. truei, suggesting similar levels of sensitivity (i.e., susceptibility) among populations regardless of stream temperature. However, invariant thermal tolerances across temperatures inA. trueisuggest that populations occupying warmer streams may be most sensitive. We identified high levels of evolutionary potential in both species based on genomic and physiological data. While further integration of these data is needed to comprehensively evaluate spatial variation in vulnerability, this work illustrates the value of genomics in identifying spatial patterns of climate change vulnerability. 
    more » « less
  3. Abstract Intensifying climate change and an increasing need for understanding its impacts on ecological communities places new emphasis on testing environmental stress models (ESMs). Using a prior literature search plus references from a more recent search, I evaluated empirical support forESMs, focusing on whether consumer pressure on prey decreased (consumer stress model;CSM) or increased (prey stress model;PSM) with increasing environmental stress. Applying the criterion that testingESMsrequires conducting research at multiple sites along environmental stress gradients, the analysis found thatCSMswere most frequent, with ‘No Effect’ andPSMsoccurring at low but similar frequencies. This result contrasts to a prior survey in which ‘No Effect’ studies were most frequent, thus suggesting that consumers are generally more suppressed by stress than prey. Thus, increased climate change‐induced environmental stress seems likely to reduce, not increase impacts of consumers on prey more often than the reverse 
    more » « less
  4. Abstract Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) andCO2partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data andIPCC AR5 ensemble climate model data. Three of the four most abundant species,Orbicella faveolata, Montastraea cavernosa,andPorites astreoides, had negative calcification responses to both elevated temperature andpCO2. In the business‐as‐usualCO2emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates.Siderastrea siderea, the other most common species, was insensitive to both temperature andpCO2within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reducedCO2emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species likeS. sidereaare not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reducedCO2emissions can limit future declines in reef calcification. 
    more » « less
  5. Abstract Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regionalNDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing ofNDVIto track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition toNDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found thatNDVIdecreased with long‐term reductions in soil moisture at theAPEXsite, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasingNDVIwith elevated temperature at theSPRUCEsite, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at theSPRUCEsite also led to increases in theLAIof the shrub layer. We found no strong effects of elevatedCO2on community composition. Our findings support recent studies suggesting that changes inNDVIobserved from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming. 
    more » « less