skip to main content


Title: Probing the limits of predictability: data assimilation of chaotic dynamics in complex food webs
Abstract

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain understanding of ecological relationships, processes and dynamics. In pursuit of mathematical tractability, these models use simplified descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological data are often complex, scale‐dependent, space‐time correlated, and governed by nonlinear relations between organisms and their environment. This disparity in complexity between ecosystem models and data has created a large gap in ecology between model and data‐driven approaches. Here, we explore data assimilation (DA) with the Ensemble Kalman filter to fuse a two‐predator‐two‐prey model with abundance data from a 2600+ day experiment of a plankton community. We analyse how frequently we must assimilate measured abundances to predict accurately population dynamics, and benchmark our population model's forecast horizon against a simple null model. Results demonstrate that DA enhances the predictability and forecast horizon of complex community dynamics.

 
more » « less
Award ID(s):
1638577
NSF-PAR ID:
10047142
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
21
Issue:
1
ISSN:
1461-023X
Page Range / eLocation ID:
p. 93-103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In ecology, it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system’s commodity. In this paper, we propose a novel method for parameterizing Lognormal state space models using an approach based on moment matching. Our method enforces the positivity constraint, allows for arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing Lognormal state space models and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess the estimation of precision parameters between our method and existing methods. We find that our models perform well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two Lognormal state space models in predicting the Leaf Area Index over a 151 day horizon by using a process-based ecosystem model to describe the temporal dynamics. We find that our moment matching model performs better than its competitor, and is better suited for intermediate predictive horizons. Overall, our study helps to inform practitioners about the importance of incorporating sensible dynamics when using models of complex systems to predict out-of-sample.

     
    more » « less
  2. Abstract

    Predicting infectious disease dynamics is a central challenge in disease ecology. Models that can assess which individuals are most at risk of being exposed to a pathogen not only provide valuable insights into disease transmission and dynamics but can also guide management interventions. Constructing such models for wild animal populations, however, is particularly challenging; often only serological data are available on a subset of individuals and nonlinear relationships between variables are common.

    Here we provide a guide to the latest advances in statistical machine learning to construct pathogen‐risk models that automatically incorporate complex nonlinear relationships with minimal statistical assumptions from ecological data with missing data. Our approach compares multiple machine learning algorithms in a unified environment to find the model with the best predictive performance and uses game theory to better interpret results. We apply this framework on two major pathogens that infect African lions: canine distemper virus (CDV) and feline parvovirus.

    Our modelling approach provided enhanced predictive performance compared to more traditional approaches, as well as new insights into disease risks in a wild population. We were able to efficiently capture and visualize strong nonlinear patterns, as well as model complex interactions between variables in shaping exposure risk from CDV and feline parvovirus. For example, we found that lions were more likely to be exposed to CDV at a young age but only in low rainfall years.

    When combined with our data calibration approach, our framework helped us to answer questions about risk of pathogen exposure that are difficult to address with previous methods. Our framework not only has the potential to aid in predicting disease risk in animal populations, but also can be used to build robust predictive models suitable for other ecological applications such as modelling species distribution or diversity patterns.

     
    more » « less
  3. Abstract

    The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.

     
    more » « less
  4. Abstract

    Ecological communities are structured by a combination of local processes like habitat filtering and species interactions, and regional forces driven by the dispersal of organisms between localities on a landscape. Previous studies suggest that the position of local communities within a dispersal network can greatly influence the relative influence of these two sets of processes on community assembly. However, the majority of previous investigations have used models or inferences based on observational data to investigate these hypotheses, while experiments directly addressing this question have been rare.

    We experimentally investigated the relative influence of local and regional processes in structuring benthic invertebrate communities using artificial streams. We manipulated three factors—source pool for the macroinvertebrate community (headwater vs. mainstem) as a surrogate of network location, habitat complexity (high vs. low) in the flume, and dispersal (high vs. low)—and followed changes in macroinvertebrate community structure for 8 weeks.

    Previous research suggests that because headwater (HW) streams are isolated within river networks,HWs are less influenced by regional processes relative to more well‐connected mainstems (MSs). We therefore predicted (i) that flumes colonised from aHWsource community would respond more strongly to our dispersal treatment than those colonised byMScommunities becauseMSwere already largely structured through dispersal‐driven processes, and (ii) that bothHWandMScommunities would respond to manipulations of local habitat, indicating that responses to the dispersal treatment were a direct result of dispersal driven dynamics rather than specific affinity for conditions in the flumes.

    Both of our predictions were strongly supported by the results of the experiment. For flumes withHWsource pools, the high dispersal treatment had significantly higher diversity than low dispersal flumes. However, this difference only occurred in flumes withHWsource pools and did not occur in flumes withMSsources. There was also strong evidence of community composition inHWflumes shifting significantly towards the macroinvertebrate composition in our experimental dispersal treatment. The major effect of experimental dispersal was to introduce new species in fairly low abundances as would be expected from dispersal via drift over a relatively short time. BothMSandHWcolonised flumes showed highly significant signals of habitat filtering, though the influence of specific habitat differed between the source types.

    These results support the hypothesis that dispersal driven processes are a more important structuring force in well‐connected areas of networks by experimentally demonstrating the responsiveness of previously isolated communities to experimentally induced dispersal. They also demonstrate that this responsiveness is not due to an inherent difference in habitat affinity since source communities from bothHWs andMSs responded to manipulation of habitat variables. This experiment only simulated one type of dispersal process in streams—drifting—and did not include simulated dispersal from other sources, nor did it include population dynamics given the relatively short duration of the experiment. Nevertheless, the sensitivity of previously isolated communities to one type of simulated dispersal is a powerful indication of the mechanisms that structure these systems.

     
    more » « less
  5. Abstract

    For wildlife inhabiting snowy environments, snow properties such as onset date, depth, strength, and distribution can influence many aspects of ecology, including movement, community dynamics, energy expenditure, and forage accessibility. As a result, snow plays a considerable role in individual fitness and ultimately population dynamics, and its evaluation is, therefore, important for comprehensive understanding of ecosystem processes in regions experiencing snow. Such understanding, and particularly study of how wildlife–snow relationships may be changing, grows more urgent as winter processes become less predictable and often more extreme under global climate change. However, studying and monitoring wildlife–snow relationships continue to be challenging because characterizing snow, an inherently complex and constantly changing environmental feature, and identifying, accessing, and applying relevant snow information at appropriate spatial and temporal scales, often require a detailed understanding of physical snow science and technologies that typically lie outside the expertise of wildlife researchers and managers. We argue that thoroughly assessing the role of snow in wildlife ecology requires substantive collaboration between researchers with expertise in each of these two fields, leveraging the discipline‐specific knowledge brought by both wildlife and snow professionals. To facilitate this collaboration and encourage more effective exploration of wildlife–snow questions, we provide a five‐step protocol: (1) identify relevant snow property information; (2) specify spatial, temporal, and informational requirements; (3) build the necessary datasets; (4) implement quality control procedures; and (5) incorporate snow information into wildlife analyses. Additionally, we explore the types of snow information that can be used within this collaborative framework. We illustrate, in the context of two examples, field observations, remote‐sensing datasets, and four example modeling tools that simulate spatiotemporal snow property distributions and, in some cases, evolutions. For each type of snow data, we highlight the collaborative opportunities for wildlife and snow professionals when designing snow data collection efforts, processing snow remote sensing products, producing tailored snow datasets, and applying the resulting snow information in wildlife analyses. We seek to provide a clear path for wildlife professionals to address wildlife–snow questions and improve ecological inference by integrating the best available snow science through collaboration with snow professionals.

     
    more » « less