skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Defense Provision via Network Functions Virtualization
Network Function Virtualization (NFV) is a critical part of a new defense paradigm providing high flexibility at a lower cost through software-based virtual instances. Despite the promise of the NFV, the original Intrusion Detection System (IDS) designed for NFV still draws heavily on processing power and requires significant CPU resources. In this paper, we provide a framework for dynamic defense provision by building in light intrusion detection network functions (NFs) over NFV. Without using the existing IDSes, our system constructs a light intrusion detection system by using a chain of network functions in NFV. The entire IDS is broken down into separate light network functions according to different protocols. The intrusion detection NFs cover various protocol stacks from the link layer to the application layer protocols. They also include different deep packet inspection NFs for different application layer protocols. The experimental results show the proposed system reduces resource consumption while performing valid intrusion detection functions.  more » « less
Award ID(s):
1642143 2128607 2128107
PAR ID:
10047712
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization
Page Range / eLocation ID:
43 to 46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of Network Function Virtualization (NFV) has provided high scalability and flexibility in developing intrusion detection systems while replacing the deployment of hardware middleboxes with software-based network appliances. This paper introduces a method of implementing intrusion detection systems (IDS) based on the concept of NFV by using ClickOS, an open source NFV project. According to, NFV enables students to develop intrusion detection systems to detect various network attack types utilizing very few computing resources. The survey results showed that students can easily understand the specific attacks and implement their own small IDS based on ClickOS. 
    more » « less
  2. Traditional network resident functions (e.g., firewalls, network address translation) and middleboxes (caches, load balancers) have moved from purpose-built appliances to software-based components. However, L2/L3 network functions (NFs) are being implemented on Network Function Virtualization (NFV) platforms that extensively exploit kernel-bypass technology. They often use DPDK for zero-copy delivery and high performance. On the other hand, L4/L7 middleboxes, which usually require full network protocol stack support, take advantage of a full-fledged kernel-based system with a greater emphasis on functionality. Thus, L2/L3 NFs and middleboxes continue to be handled by distinct platforms on different nodes.This paper proposes MiddleNet that seeks to overcome this dichotomy by developing a unified network resident function framework that supports L2/L3 NFs and L4/L7 middleboxes. MiddleNet supports function chains that are essential in both NFV and middlebox environments. MiddleNet uses DPDK for zero-copy packet delivery without interrupt-based processing, to enable the ‘bump-in-the-wire’ L2/L3 processing performance required of NFV. To support L4/L7 middlebox functionality, MiddleNet utilizes a consolidated, kernel-based protocol stack processing, avoiding a dedicated protocol stack for each function. MiddleNet fully exploits the event-driven capabilities provided by the extended Berkeley Packet Filter (eBPF) and seamlessly integrates it with shared memory for high-performance communication in L4/L7 middlebox function chains. The overheads for MiddleNet are strictly load-proportional, without needing the dedicated CPU cores of DPDK-based approaches. MiddleNet supports flow-dependent packet processing by leveraging Single Root I/O Virtualization (SR-IOV) to dynamically select packet processing needed (Layer 2 to Layer 7). Our experimental results show that MiddleNet can achieve high performance in such a unified environment. 
    more » « less
  3. In the Software Defined Networking (SDN) and Network Function Virtualization (NFV) era, it is critical to enable dynamic network access control. Traditionally, network access control policies are statically predefined as router entries or firewall rules. SDN enables more flexibility by re-actively installing flow rules into the switches to achieve dynamic network access control. However, SDN is limited in capturing network anomalies, which are usually important signs of security threats. In this paper, we propose to employ anomaly-based Intrusion Detection System (IDS) to capture network anomalies and generate SDN flow rules to enable dynamic network access control. We gain the knowledge of network anomalies from anomaly-based IDS by training an interpretable model to explain its outcome. Based on the explanation, we derive access control policies. We demonstrate the feasibility of our approach by explaining the outcome of an anomaly-based IDS built upon a Recurrent Neural Network (RNN) and generating SDN flow rules based on our explanation. 
    more » « less
  4. For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against largescale disruptive botnet attacks by using SDN/NFV and machinelearning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols. 
    more » « less
  5. Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency. 
    more » « less