skip to main content


Title: Blockchain-Based Architecture for Secured Cyber-Attack Features Exchange
Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.  more » « less
Award ID(s):
1818884
PAR ID:
10165161
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The 7th International conference on Cyber Security and cloud computing (IEEE CSCLOUD 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency. 
    more » « less
  2. null (Ed.)
    Blockchain technology has recently gained high popularity in data security, primarily to mitigate against data breach and manipulation. Since its inception in 2008, it has been applied in different areas mainly to maintain data integrity and consistency. Blockchain has been tailored to secure data due to its data immutability and distributive technology. Despite the high success rate in data security, the inability to identify compromised insider nodes is one of the significant problems encountered in blockchain architectures. A Blockchain network is made up of nodes that initiate, verify and validate transactions. If compromised, these nodes can manipulate submitted transactions, inject fake transactions, or retrieve unauthorized information that might eventually compromise the stored data's integrity and consistency. This paper proposes a novel method of detecting these compromised blockchain nodes using a server-side authentication process and thwart their activities before getting updated in the blockchain ledger. In evaluating the proposed system, we perform four common insider attacks, which fall under the following three categories: (1)Those attacks targeting the Blockchain to bring it down. (2) the attacks that attempt to inject fake data into the database. (3) The attacks that attempt to hijack or retrieve unauthorized data. We described how we implement the attacks and how our architecture detects them before they impact the network. Finally, we displayed the attack detection time for each attack and compared our approach with other existing methods. 
    more » « less
  3. Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability. 
    more » « less
  4. At present, machine learning (ML) algorithms are essential components in designing the sophisticated intrusion detection system (IDS). They are building-blocks to enhance cyber threat detection and help in classification at host-level and network-level in a short period. The increasing global connectivity and advancements of network technologies have added unprecedented challenges and opportunities to network security. Malicious attacks impose a huge security threat and warrant scalable solutions to thwart large-scale attacks. These activities encourage researchers to address these imminent threats by analyzing a large volume of the dataset to tackle all possible ranges of attack. In this proposed method, we calculated the fitness value of each feature from the population by using a genetic algorithm (GA) and selected them according to the fitness value. The fitness values are presented in hierarchical order to show the effectiveness of problem decomposition. We implemented Support Vector Machine (SVM) to verify the consistency of the system outcome. The well-known NSL-knowledge discovery in databases (KDD) was used to measure the performance of the system. From the experiments, we achieved a notable classification accuracies using a SVM of the current state of the art intrusion detection. 
    more » « less
  5. Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept of attack graphs. Attack graphs were proposed to study how multi-stage attacks could be launched by exploiting known vulnerabilities. Instead of constructing attacks reactively, we propose to apply attack graphs proactively to detect sequences of events that fulfill the requirements for vulnerability exploitation. Using this insight, we examine how to generate modular attack graphs automatically that relate adversary accessibility for each component, called its attack surface, to flaws that provide adversaries with permissions that create threats, called attack states, and exploit operations from those threats, called attack actions. We evaluate the proposed approach by applying it to two case studies: (1) attacks on file retrieval, such as TOCTTOU attacks, and (2) attacks propagated among processes, such as attacks on Shellshock vulnerabilities. In these case studies, we demonstrate how to leverage existing tools to compute attack graphs automatically and assess the effectiveness of these tools for building complete attack graphs. While we identify some research areas, we also find several reasons why attack graphs can provide a valuable foundation for improving future intrusion detection systems. 
    more » « less