skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materials composed of the Drosophila melanogaster protein ultrabithorax are cytocompatible: Ubx Protein Materials are Cytocompatible
Award ID(s):
1151394
PAR ID:
10048050
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
102
Issue:
1
ISSN:
1549-3296
Page Range / eLocation ID:
97 to 104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A short peptide, FHHF-11, was designed to change stiffness as a function of pH due to changing degree of protonation of histidines. As pH changes in the physiologically relevant range, G′ was measured at 0 Pa (pH 6) and 50,000 Pa (pH 8). This peptide-based hydrogel is antimicrobial and cytocompatible with skin cells (fibroblasts). It was demonstrated that the incorporation of unnatural AzAla tryptophan analog residue improves the antimicrobial properties of the hydrogel. The material developed can have a practical application and be a paradigm shift in the approach to wound treatment, and it will improve healing outcomes for millions of patients each year. 
    more » « less
  2. Abstract Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein‐engineered materials from the perspectives of domain‐based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed. 
    more » « less
  3. Membraneless organelles are RNA–protein assemblies which have been implicated in post‐transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain‐containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that inDrosophila, different germ granule proteins associate with the multi‐domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudorin vitroand, surprisingly, partition to distinct and poorly overlapping clusters in germ granulesin vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule. 
    more » « less