skip to main content


Title: Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.  more » « less
Award ID(s):
1656464
NSF-PAR ID:
10048548
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
6
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types - a lineage-specific sensory-effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here we show that the class IV POU homeodomain transcription factor (POU-IV) - an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria - controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes - including the transmembrane-receptor-encoding gene polycystin 1 - specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons. 
    more » « less
  2. null (Ed.)
    Sensory feedback during movement entails sensing a mix of externally- and self-generated stimuli (respectively, exafference and reafference). In many peripheral sensory systems, a parallel copy of the motor command, a corollary discharge, is thought to eliminate sensory feedback during behaviors. However, reafference has important roles in motor control, because it provides real-time feedback on the animal’s motions through the environment. In this case, the corollary discharge must be calibrated to enable feedback while avoiding negative consequences like sensor fatigue. The undulatory motions of fishes’ bodies generate induced flows that are sensed by the lateral line sensory organ, and prior work has shown these reafferent signals contribute to the regulation of swimming kinematics. Corollary discharge to the lateral line reduces the gain for reafference, but cannot eliminate it altogether. We develop a data-driven model integrating swimming biomechanics, hair cell physiology, and corollary discharge to understand how sensory modulation is calibrated during locomotion in larval zebrafish. In the absence of corollary discharge, lateral line afferent units exhibit the highly heterogeneous habituation rates characteristic of hair cell systems, typified by decaying sensitivity and phase distortions with respect to an input stimulus. Activation of the corollary discharge prevents habituation, reduces response heterogeneity, and regulates response phases in a narrow interval around the time of the peak stimulus. This suggests a synergistic interaction between the corollary discharge and the polarization of lateral line sensors, which sharpens sensitivity along their preferred axes. Our integrative model reveals a vital role of corollary discharge for ensuring precise feedback, including proprioception, during undulatory locomotion. 
    more » « less
  3. Abstract Legume plants such as soybean produce two major types of root lateral organs, lateral roots and root nodules. A robust computational framework was developed to predict potential gene regulatory networks (GRNs) associated with root lateral organ development in soybean. A genome-scale expression data set was obtained from soybean root nodules and lateral roots and subjected to biclustering using QUBIC (QUalitative BIClustering algorithm). Biclusters and transcription factor (TF) genes with enriched expression in lateral root tissues were converged using different network inference algorithms to predict high-confidence regulatory modules that were repeatedly retrieved in different methods. The ranked combination of results from all different network inference algorithms into one ensemble solution identified 21 GRN modules of 182 co-regulated genes networks, potentially involved in root lateral organ development stages in soybean. The workflow correctly predicted previously known nodule- and lateral root-associated TFs including the expected hierarchical relationships. The results revealed distinct high-confidence GRN modules associated with early nodule development involving AP2, GRF5 and C3H family TFs, and those associated with nodule maturation involving GRAS, LBD41 and ARR18 family TFs. Knowledge from this work supported by experimental validation in the future is expected to help determine key gene targets for biotechnological strategies to optimize nodule formation and enhance nitrogen fixation. 
    more » « less
  4. Abstract

    Grass leaves develop from a ring of primordial initial cells within the periphery of the shoot apical meristem, a pool of organogenic stem cells that generates all of the organs of the plant shoot. At maturity, the grass leaf is a flattened, strap-like organ comprising a proximal supportive sheath surrounding the stem and a distal photosynthetic blade. The sheath and blade are partitioned by a hinge-like auricle and the ligule, a fringe of epidermally derived tissue that grows from the adaxial (top) leaf surface. Together, the ligule and auricle comprise morphological novelties that are specific to grass leaves. Understanding how the planar outgrowth of grass leaves and their adjoining ligules is genetically controlled can yield insight into their evolutionary origins. Here we use single-cell RNA-sequencing analyses to identify a ‘rim’ cell type present at the margins of maize leaf primordia. Cells in the leaf rim have a distinctive identity and share transcriptional signatures with proliferating ligule cells, suggesting that a shared developmental genetic programme patterns both leaves and ligules. Moreover, we show that rim function is regulated by genetically redundant Wuschel-like homeobox3 (WOX3) transcription factors. Higher-order mutations in maizeWox3genes greatly reduce leaf width and disrupt ligule outgrowth and patterning. Together, these findings illustrate the generalizable use of a rim domain during planar growth of maize leaves and ligules, and suggest a parsimonious model for the homology of the grass ligule as a distal extension of the leaf sheath margin.

     
    more » « less
  5. Abstract

    Plants generate their reproductive organs, the stamens and the carpels, de novo within the flowers that form when the plant reaches maturity. The carpels comprise the female reproductive organ, the gynoecium, a complex organ that develops along several axes of polarity and is crucial for plant reproduction, fruit formation, and seed dispersal. The epigenetic trithorax group (trxG) protein ULTRAPETALA1 (ULT1) and the GARP domain transcription factor KANADI1 (KAN1) act cooperatively to regulateArabidopsis thalianagynoecium patterning along the apical–basal polarity axis; however, the molecular pathways through which this patterning activity is achieved remain to be explored. In this study, we used transcriptomics to identify genome‐wide ULT1 and KAN1 target genes during reproductive development. We discovered 278 genes in developing flowers that are regulated by ULT1, KAN1, or both factors together. Genes involved in developmental and reproductive processes are overrepresented among ULT1 and/or KAN1 target genes, along with genes involved in biotic or abiotic stress responses. Consistent with their function in regulating gynoecium patterning, a number of the downstream target genes are expressed in the developing gynoecium, including a unique subset restricted to the stigmatic tissue. Further, we also uncovered a number of KAN1‐ and ULT1‐induced genes that are transcribed predominantly or exclusively in developing stamens. These findings reveal a potential cooperative role for ULT1 and KAN1 in male as well as female reproductive development that can be investigated with future genetic and molecular experiments.

     
    more » « less