skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping and coverage with a particle swarm controlled by uniform inputs
We propose an approach to mapping tissue and vascular systems without the use of contrast agents, based on moving and measuring magnetic particles. To this end, we consider a swarm of particles in a 1D or 2D grid that can be tracked and controlled by an external agent. Control inputs are applied uniformly so that each particle experiences the same applied forces. We present algorithms for three tasks: (1) Mapping, i.e., building a representation of the free and obstacle regions of the workspace; (2) Subset Coverage, i.e., ensuring that at least one particle reaches each of a set of desired locations; and (3) Coverage, i.e., ensuring that every free region on the map is visited by at least one particle. These tasks relate to a large body of previous work from robot navigation, both from theory and practice, which is based on individual control. We provide theoretical insights that have potential relevance for fast MRI scans with magnetically controlled contrast media. In particular, we develop a fundamentally new approach for searching for an object at an unknown distance D, where the search is subject to two different and independent cost parameters for moving and for measuring. We show that regardless of the relative cost of these two operations, there is a simple O(log D/log log D)-competitive strategy, which is the best possible. Also, we provide practically useful and computationally efficient strategies for higher-dimensional settings. These algorithms extend to any number of particles and show that additional particles tend to reduce the mean and the standard deviation of the time required for each task.  more » « less
Award ID(s):
1553063 1619278
PAR ID:
10048942
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on
Page Range / eLocation ID:
1097 to 1104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a differentiable moving particle representation based on the multi-level partition of unity (MPU) to represent dynamic implicit geometries. At the core of our representation are two groups of particles, named feature particles and sample particles, which can move in space and produce dynamic surfaces according to external velocity fields or optimization gradients. These two particle groups iteratively guide and correct each other by alternating their roles as inputs and outputs. Each feature particle carries a set of coefficients for a local quadratic patch. These particle patches are assembled with partition-of-unity weights to derive a continuous implicit global shape. Each sampling particle carries its position and orientation, serving as dense surface samples for optimization tasks. Based on these moving particles, we develop a fully differentiable framework to infer and evolve highly detailed implicit geometries, enhanced by a multi-level background grid for particle adaptivity, across different inverse tasks. We demonstrated the efficacy of our representation through various benchmark comparisons with state-of-the-art neural representations, achieving lower memory consumption, fewer training iterations, and orders of magnitude higher accuracy in handling topologically complex objects and dynamic tracking tasks. 
    more » « less
  2. This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area. 
    more » « less
  3. We propose the use of PolyPIC transfers [10] to construct a second order accurate discretization of the Navier-Stokes equations within a particle-in-cell framework on MAC grids. We investigate the accuracy of both APIC [16], [17], [8] and quadratic PolyPIC [10] transfers and demonstrate that they are suitable for constructing schemes converging with orders of approximately 1.5 and 2.5 respectively. We combine PolyPIC transfers with BDF-2 time integration and a splitting scheme for pressure and viscosity and demonstrate that the resulting scheme is second order accurate. Prior high order particle-in-cell schemes interpolate accelerations (not velocities) from the grid to particles and rely on moving least squares to transfer particle velocities to the computational grid. The proposed method instead transfers velocities to particles, which avoids the accumulation of noise on particle velocities but requires the polynomial reconstruction to be performed using polynomials that are one degree higher. Since this polynomial reconstruction occurs over the regular grid (rather than irregularly distributed particles), the resulting weighted least squares problem has a fixed sparse structure, can be solved efficiently in closed form, and is independent of particle coverage. 
    more » « less
  4. We introduce and study the problem of dueling optimization with a monotone adversary, a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer x* for a function f:X→R, for X \subseteq R^d. In each round, the algorithm submits a pair of guesses x1 and x2, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worst of the two guesses; i.e., max(f(x1) − f(x*),f(x2) − f(x*)). The goal is to minimize the number of iterations required to find an ε-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function f and set X that incurs cost O(d) and iteration complexity O(d log(1/ε)^2). Moreover, our dependence on d is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur Ω(d) cost and iteration complexity. 
    more » « less
  5. We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution over the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight O(log n)-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of O(log n) has long been conjectured and remains a tantalizing open question. In this paper, we show that the i.i.d model admits substantially better algorithms: our main result is an O((log log log n)^2)-competitive algorithm in this model, implying a strict separation between the i.i.d model and the adversarial and random order models. Along the way we give a 9-competitive algorithm for the line and tree metrics - the first O(1)-competitive algorithm for any non-trivial arrival model for these much-studied metrics. 
    more » « less