skip to main content


Title: Transport properties of disordered two‐dimensional complex plasma crystal

In this study, we numerically investigate the transport properties of a two‐dimensional (2D) complex plasma crystal using diffusion of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non‐Hamiltonian effects, we identify two distinct types of wave transport: Anderson‐type delocalization and long‐distance excitation. We use a recently developed spectral approach to evaluate the contribution of the Anderson problem and compare it to the results of the simulation. The benefit of our approach to transport problems is twofold. First, we employ a highly tuneable macroscopic hexagonal crystal, which exhibits many‐body interactions and allows for the investigation of transport properties at the kinetic level. Second, the analysis of the transport problem in2Dis provided using an innovative spectral approach, which avoids the use of scaling and boundary conditions. The comparison between the analytically predicted and numerically observed wave dynamics allows for the study of important characteristics of this open system. In our simulations, we observe long‐distance lattice excitation, which occurs around lattice defects even when the initial perturbation does not spread from the centre to the exterior of the crystal. In the decoupled Hamiltonian regime, this many‐body effect can be attributed to the dust lattice interaction with the plasma environment.

 
more » « less
Award ID(s):
1740203 1802682
NSF-PAR ID:
10049001
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Contributions to Plasma Physics
Volume:
58
Issue:
2-3
ISSN:
0863-1042
Page Range / eLocation ID:
p. 209-216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

     
    more » « less
  2. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less
  3. Abstract

    RFcoil design for human ultra‐high field (7 T and higher) magnetic resonance (MR) imaging is an area of intense development, to overcome difficult challenges such asRFexcitation spatial heterogeneity and lowRFtransfer efficiency into the spin system. This article proposes a novel category of multi‐channelRFvolume coil structures at both 7 T and 10.5 T based on a subject‐loaded multifilar helical‐antennaRFcoil that aims at addressing these problems. In some prior applications of helix antennas asMR RFcoils at 7 T, the imaged sample was positioned outside the helix. Here, we introduce a radically different approach, with the inner volume of a helix antenna being utilized to image a sample. The new coil uniquely combines traveling‐wave behavior through the overall antenna wire structure and near‐fieldRFinteraction between the conducting elements and the imaged tissues. It thus benefits from the congruence of far‐ and near‐field regimes. Design and analysis of the novel inner‐volume coils are performed by numerical simulations using multiple computational electromagnetics techniques. The fabricated coil prototypes are tested, validated, and evaluated experimentally in 7‐T and 10.5‐TMRhuman wide bore (90‐cm) MRscanners. Phantom data at 7 T show good consistency between numerical simulations and experimental results. SimulatedB1+transmit efficiencies, in T/√W, are comparable to those of some of the conventional and state‐of‐the‐artRFcoil designs at 7 T. Experimental results at 10.5 T show the scalability of the helix coil design.

     
    more » « less
  4. Abstract

    Dry, ephemeral, desert wetlands are major sources of windblown sediment, as well as repositories for diapausing stages (propagules) of aquatic invertebrates. Zooplankton propagules are of the same size range as sand and dust grains. They can be deflated and transported in windstorm events. This study provides evidence that dust storms aid in dispersal of microinvertebrate propagules via anemochory (aeolian transport).

    We monitored 91 windstorms at six sites in the southwestern U.S.A. over a 17‐year period. The primary study site was located in El Paso, Texas in the northern Chihuahuan Desert. Additional samples were collected from the Southern High Plains region. Dust carried by these events was collected and rehydrated to hatch viable propagules transported with it.

    Using samples collected over a 6‐year period, 21 m above the ground, which included 59 storm events, we tested the hypothesis that transport of propagules is correlated with storm intensity by monitoring meteorological conditions such as storm duration, wind direction, wind speed, and particulate matter (PM10; fine dust concentration). An air quality monitoring site located adjacent to the dust samplers provided quantitative hourly measurements.

    Rehydration results from all events showed that ciliates were found in 92% of the samples, rotifers in 81%, branchiopods in 29%, ostracods in 4%, nematodes in 13%, gastrotrichs in 16%, and tardigrades in 3%. Overall, four bdelloid and 11 monogonont rotifer species were identified from rehydrated windblown dust samples.

    Principal component analysis indicated gastrotrichs, branchiopods, nematodes, tardigrades, and monogonont rotifer occurrence positively correlated withPM10and dust event duration. Bdelloid rotifers were correlated with amount of sediment deposited. Non‐metric multidimensional scaling showed a significant relationship betweenPM10and occurrence of some taxa. Zero‐inflated, general linear models with mixed‐effects indicated significant relationships with bdelloid and nematode transport andPM10.

    Thus, windstorms with highPM10concentration and long duration are more likely to transport microinvertebrate diapausing stages in drylands.

     
    more » « less
  5. Summary

    Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function ofSUTsucrose transporters. In this study, we used vegetable peas (Pisum sativumL.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenousSUT1transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenicSUT1plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased inSUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that theSUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.

     
    more » « less