Summary Abscisic acid (ABA) receptors belong to theSTARTdomain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life.STARTdomain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterizedSTARTdomain proteins are the 14PYR/PYL/RCAR ABAreceptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently inNicotiana benthamianacoupled to untargetedLC‐MSto identify candidate binding ligands. We optimized this method usingABA–PYLinteractions and show thatABAco‐purifies with wild‐typePYL5 but not a binding site mutant. TheKdofPYL5 forABAis 1.1 μm, which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37STARTdomain‐related proteins, which resulted in the identification of ligands that co‐purified withMLBP1 (At4G01883) orMLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed thatMLBP1 binds to monolinolenin, which we confirmed using recombinantMLBP1. Monolinolenin also co‐purified withMLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.
more »
« less
Transport properties of disordered two‐dimensional complex plasma crystal
In this study, we numerically investigate the transport properties of a two‐dimensional (2D) complex plasma crystal using diffusion of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non‐Hamiltonian effects, we identify two distinct types of wave transport: Anderson‐type delocalization and long‐distance excitation. We use a recently developed spectral approach to evaluate the contribution of the Anderson problem and compare it to the results of the simulation. The benefit of our approach to transport problems is twofold. First, we employ a highly tuneable macroscopic hexagonal crystal, which exhibits many‐body interactions and allows for the investigation of transport properties at the kinetic level. Second, the analysis of the transport problem in2Dis provided using an innovative spectral approach, which avoids the use of scaling and boundary conditions. The comparison between the analytically predicted and numerically observed wave dynamics allows for the study of important characteristics of this open system. In our simulations, we observe long‐distance lattice excitation, which occurs around lattice defects even when the initial perturbation does not spread from the centre to the exterior of the crystal. In the decoupled Hamiltonian regime, this many‐body effect can be attributed to the dust lattice interaction with the plasma environment.
more »
« less
- PAR ID:
- 10049001
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Contributions to Plasma Physics
- Volume:
- 58
- Issue:
- 2-3
- ISSN:
- 0863-1042
- Page Range / eLocation ID:
- p. 209-216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.more » « less
-
Summary In flowering plants, cell–cell communication plays a key role in reproductive success, as both pollination and fertilization require pathways that regulate interactions between many different cell types. Some of the most critical of these interactions are those between the pollen tube (PT) and the embryo sac, which ensure the delivery of sperm cells required for double fertilization. Synergid cells function to attract thePTthrough secretion of small peptides and inPTreception via membrane‐bound proteins associated with the endomembrane system and the cell surface. While many synergid‐expressed components regulatingPTattraction and reception have been identified, few tools exist to study the localization of membrane‐bound proteins and the components of the endomembrane system in this cell type. In this study, we describe the localization and distribution of seven fluorescent markers that labelled components of the secretory pathway in synergid cells ofArabidopsis thaliana. These markers were used in co‐localization experiments to investigate the subcellular distribution of the twoPTreception componentsLORELEI, aGPI‐anchored surface protein, andNORTIA, aMILDEW RESISTANCE LOCUSO protein, both found within the endomembrane system of the synergid cell. These secretory markers are useful tools for both reproductive and cell biologists, enabling the analysis of membrane‐associated trafficking within a haploid cell actively involved in polar transport.more » « less
-
Abstract Pulsed‐laser irradiation causes the visible‐near‐infrared spectral slope of olivine (Fo90and Fo99+) and SiO2to increase (redden), while the olivine samples darken and the SiO2samples brighten slightly.XPSanalysis shows that irradiation of Fo90produces metallic Fe. AnalyticalSEMandTEMmeasurements confirm that reddening in the Fo90olivine samples correlates with the production of “nanophase” metallic Fe (npFe0) grains, 20–50 nm in size. The reddening observed in the SiO2sample is consistent with the formation of SiO or other SiOxspecies that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0particles, such as the 100–400 nm diameter npFe0identified during ourTEManalysis of Fo90samples. The Fo90reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0is causing the spectral alteration. Finally, we find that the accumulation of successive laser pulses cause continued sample darkening in the Vis‐NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.more » « less
-
Abstract Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor‐overexpressing (D2R‐OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R‐OEmice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayedFAA. In contrast, under 8‐hr food availability, control mice showedFAA, but D2R‐OEmice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescuedFAAunder 8‐hr restricted food. We next tested for circadian regulation ofFAA. When given ad libitum access to food, neither D2R‐OEnor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R‐OEmice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reducesFAAby modulating motivation and not by acting on a clock mechanism.more » « less
An official website of the United States government
