skip to main content


Title: Identifying the Dominant Drivers of Hydrological Change in the Contiguous United States
Abstract

Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management.

 
more » « less
Award ID(s):
2003248
NSF-PAR ID:
10442552
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How precipitation (P) is translated into streamflow (Q) and over what timescales (i.e., “memory”) is difficult to predict without calibration of site‐specific models or using geochemical approaches, posing barriers to prediction in ungauged basins or advancement of general theories. Here, we used a data‐driven approach to identify regional patterns and exogenous controls on P–Q interactions. We applied an information flow analysis, which quantifies uncertainty reduction, to a daily time series of P and Q from 671 watersheds across the conterminous United States. We first demonstrated that information transfer from P to Q primarily reflects the quickflow component of water‐budgets, based on a watershed model. Readily quantifiable information flows show a functional relationship with model parameters, suggesting utility for model calibration. Second, applied to real watersheds, P–Q information flows exhibit seasonally varying behavior within regions in a manner consistent with dominant runoff generation mechanisms. However, the timing and the magnitude of information flows also reflect considerable subregional heterogeneity, likely attributable to differences in watershed size, baseflow contributions, and variation in aerial coverage of preferential flow paths. A regression analysis showed that a combination of climate and watershed characteristics are predictive of P–Q information flows. Though information flows cannot, in most cases, uniquely determine dominant runoff mechanisms, they provide a means to quantify the heterogeneous outcomes of those mechanisms within regions, thereby serving as a benchmarking tool for models developed at the regional scale. Last, information flows characterize regionally specific ways in which catchment connectivity changes from the wet to dry season.

     
    more » « less
  2. Abstract

    Global warming is expected to cause significant changes in the pattern of precipitation minus evaporation (PE), which represents the net flux of water from the atmosphere to the surface or, equivalently, the convergence of moisture transport within the atmosphere. In most global climate model simulations, the pattern ofPEchange resembles an amplification of the historical pattern—a tendency known as “wet gets wetter, dry gets drier.” However, models also predict significant departures from this approximation that are not well understood. Here, we introduce a new method of decomposing the pattern ofPEchange into contributions from various dynamic and thermodynamic mechanisms and use it to investigate the response ofPEto global warming within the CESM1 Large Ensemble. In contrast to previous decompositions ofPEchange, ours incorporates changes not only in the monthly means of atmospheric winds and moisture, but also in their temporal variability, allowing us to isolate the hydrologic impacts of changes in the mean circulation, transient eddies, relative humidity, and the spatial and temporal distributions of temperature. In general, we find that changes in the mean circulation primarily control thePEresponse in the tropics, while temperature changes dominate at higher latitudes. Although the relative importance of specific mechanisms varies by region, at the global scale departures from the wet-gets-wetter approximation over land are primarily due to changes in the temperature lapse rate, while changes in the mean circulation, relative humidity, and horizontal temperature gradients play a secondary role.

     
    more » « less
  3. Understanding the process of precipitation partitioning into evapotranspiration and streamflow is fundamental for water resource planning. The Budyko framework has been widely used to evaluate the factors influencing this process. Still, its application has primarily focused on studying watersheds with minimal human influence and on a relatively small number of factors. Furthermore, there are discrepancies in the literature regarding the effects of climatic factors and land use changes on this process. To address these gaps, this study aims to quantify the influence of climate and anthropogenic activities on streamflow generation in the contiguous United States. To accomplish this, we calibrated an analytical form of the Budyko curve from 1990 to 2020 for 383 watersheds. We developed regional models of , a free parameter introduced to account for controls of precipitation partitioning not captured in the original Budyko equation, within different climate zones. We computed 49 climatic and landscape factors that were related to using correlation analysis and stepwise multiple linear regression. The findings of this study show that human activities explained a low variance of the spatial heterogeneity of compared with the watershed slope and the synchronization between precipitation and potential evapotranspiration, nevertheless, urban development emerged as a factor in temperate climates, whereas irrigated agriculture emerged in cold climates. In arid climates, mean annual precipitation explains less than 20% of the spatial variability in mean annual streamflow; furthermore, this climate is the most responsive to changes in . These results provide valuable insights into how land use and climate interact to impact streamflow generation differently in the contiguous United States contingent on the regional climate, explaining discrepancies in the literature. 
    more » « less
  4. Abstract

    Predicting future streamflow change is essential for water resources management and understanding the impacts of projected climate and land use changes on water availability. The Budyko framework is a useful and computationally efficient tool to model streamflow at larger spatial scales. This study predicts future streamflow changes in 889 watersheds in the contiguous United States based on projected climate and land use changes from 2040 to 2069. The temporal variability of surface water balance controls, represented by the Budykoωparameter, was modeled using multiple linear regression, random forest (RF), and gradient boosting. Results show that RF is the optimal model and can explain >85% of the variance in most watersheds. Relative cumulative moisture surplus, forest coverage, crop land and urban land are the most important variables of the time‐varyingωin most watersheds. There are statistically significant increases in mean annual precipitation, potential evapotranspiration, andωin 2040–2069, as compared to 1950–2005. This leads to a statistically significant decrease in the runoff ratio (Q/P). Streamflow is projected to decrease in the central, southwestern, and southeastern United States and increase in the northeast. These projections of water availability which are based on future climate and land use change scenarios can inform water resources management and adaptation strategies.

     
    more » « less
  5. Abstract

    Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns.

     
    more » « less