skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of magnetic anisotropy on the natural remanent magnetization in the MCU IVe' layer of the Bjerkreim Sokndal Layered Intrusion, Rogaland, Southern Norway: AMS AND NRM IN BJERKREIM SOKNDAL INTRUSION
Award ID(s):
1642268 1339505
PAR ID:
10049691
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
122
Issue:
2
ISSN:
2169-9313
Page Range / eLocation ID:
790 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Saltwater intrusion on coastal farmlands can render productive land unsuitable for agricultural activities. While the visible extent of salt-impacted land provides a useful saltwater intrusion proxy, it is challenging to identify in early stages. Moreover, associated ecological and economic impacts are often underestimated as reduced crop yields in farmlands surrounding salt patches are difficult to quantify. Here we develop a high-resolution (1 m) dataset showing salt patches on farm fringes and quantify the extent of salt-impacted lands across the Delmarva Peninsula, United States. Our method is transferable to other regions across and beyond the mid-Atlantic with similar saltwater intrusion issues, such as Georgia and the Carolinas. Our results show that between 2011 and 2017, visible salt patches almost doubled and 8,096 ha of farmlands converted to marsh—another saltwater intrusion consequence. Field-based electrical conductivity measurements show elevated salinity values hundreds of metres from visible salt patches, indicating the broader extent of at-risk farmlands. More farmland areas were within 200 m of a visible salt patch in 2017 compared to 2011, a rise ranging between 68% in Delaware and 93% in Maryland. On the basis of assumed 100% profit loss in at-risk farmlands within a 200 m buffer around salt patches in 2016–2017, the range of economic losses was estimated between US$39.4 million and US$107.5 million annually, under 100% soy or corn counterfactuals, respectively. 
    more » « less
  2. Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in the face of climate change‐driven sea level rise and hydrologic variability. Saltwater contamination of surface freshwater in the coastal California Pajaro Valley exemplifies this concern, where surface water cannot be diverted for agriculture if it is too saline. Closures at the mouth of the Pajaro River Lagoon, a bar‐built estuary in the Pajaro Valley, are associated with SWI. Closures and SWI are driven by a combination of offshore climate, coastal hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management. Here, we describe the Pajaro Valley coastal water system and identify the oceanic and inland hydrologic drivers of SWI using available observational data between 2012 and 2020. We use time series and exploratory statistical analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge, and contextual knowledge from local water managers. We observe that wet season lagoon closure and SWI events follow high oceanic TWLs coupled with low stage and discharge in the inland freshwater network, revealing how both wave and inland flow conditions govern lagoon closures and coincident SWI. This study yields novel empirical findings and a methodology for connecting coastal oceanography, estuarine coupled hydro‐ and morpho‐dynamics, inland hydrology, and water management practices relevant to climate change adaptation in human‐modified coastal water systems. 
    more » « less