Dynamical systems that evolve continuously over time are ubiquitous throughout science and engineering. Machine learning (ML) provides data-driven approaches to model and predict the dynamics of such systems. A core issue with this approach is that ML models are typically trained on discrete data, using ML methodologies that are not aware of underlying continuity properties. This results in models that often do not capture any underlying continuous dynamics—either of the system of interest, or indeed of any related system. To address this challenge, we develop a convergence test based on numerical analysis theory. Our test verifies whether a model has learned a function that accurately approximates an underlying continuous dynamics. Models that fail this test fail to capture relevant dynamics, rendering them of limited utility for many scientific prediction tasks; while models that pass this test enable both better interpolation and better extrapolation in multiple ways. Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
more »
« less
Continuous Intrusion: Characterizing the Security of Continuous Integration Services
- Award ID(s):
- 2054657
- PAR ID:
- 10529055
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-9336-9
- Page Range / eLocation ID:
- 1561 to 1577
- Format(s):
- Medium: X
- Location:
- San Francisco, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We introduce a continuous analogue of the Learning with Errors (LWE) problem, which we name CLWE. We give a polynomial-time quantum reduction from worst-case lattice problems to CLWE, showing that CLWE enjoys similar hardness guarantees to those of LWE. Alternatively, our result can also be seen as opening new avenues of (quantum) attacks on lattice problems. Our work resolves an open problem regarding the computational complexity of learning mixtures of Gaussians without separability assumptions (Diakonikolas 2016, Moitra 2018). As an additional motivation, (a slight variant of) CLWE was considered in the context of robust machine learning (Diakonikolas et al. FOCS 2017), where hardness in the statistical query (SQ) model was shown; our work addresses the open question regarding its computational hardness (Bubeck et al. ICML 2019).more » « less
An official website of the United States government

