Various textiles have previously been evaluated for use in cloth face masks as a reusable option to help control the spread of respiratory viruses, but only their initial performance was tested. In this study, a broad range of fabrics (3 knit, 7 woven, and 3 nonwoven) were characterized for filtration efficiency (FE) and air permeability (AP) before and after 40 decontamination cycles by home laundry, microwave-generated steam, or dishwasher sterilization. AP was quantified following ASTM D737, and FE was assessed using NaCl aerosol in a simulated breathing system. While most fabrics maintained or improved their FE after 40 decontamination cycles, the AP of many fabrics decreased due to detergent buildup, fiber breakage, and fabric shrinkage. Tightly woven cotton fabrics had unacceptably low AP and FE performance. Knit and nonwoven structures had the best balance of properties, and although they are not recommended for use in single-layer masks, they have potential use in multilayer masks.
more »
« less
Toward the development of customizable textile-integrated thermal actuators
This study explores efficient methods for production of customizable heated textiles. An electrical heating system using the Liberator40® conductive fiber, stitched in a serpentine pattern on stretch knit fabrics, was employed. Parameters including thread layers, pattern sizes, and different fiber-based substrates and covering were compared when analyzing resistance and temperature output. Results indicated that covered knit fabrics stitched with a 0.4cm serpentine spacing produced the most efficient measure of temperature.
more »
« less
- Award ID(s):
- 1646543
- PAR ID:
- 10049768
- Date Published:
- Journal Name:
- Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers
- Page Range / eLocation ID:
- 29 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Machine knitting is an increasingly accessible fabrication technology for producing custom soft goods. However, recent machine knitting research has focused on knit shaping, or on adapting hand-knitting patterns. We explore a capability unique to machine knitting: producing multilayer spacer fabrics. These fabrics consist of two face layers connected by a monofilament filler yarn which gives the structure stiffness and volume. We show how to vary knit patterning and yarn parameters in spacer fabrics to produce tactile materials with embedded functionality for forming soft actuated mechanisms and sensors with tunable density, stiffness, material bias, and bristle properties. These soft mechanisms can be rapidly produced on a computationally-controlled v-bed knitting machine and integrated directly into soft objects.more » « less
-
Electronic textile (E-textile) research requires an understanding of the mechanical properties of fabric substrates used to build and support electronics. Because fibers are often non-uniform and fabrics are easily deformed, locating fiber junctions on the irregular surface is challenging, yet is essential for packaging electronics on textiles at the resolution of single fibers that deliver power and signals. In this paper, we demonstrate the need to identify fiber junctions in a task where microelectromechanical structures (MEMS) are integrated on fabrics. We discuss the benefits of fiber-aligned placement compared with random placement. Thereafter we compare three image processing algorithms to extract fiber junction locations from sample fabric images. The Hough line transform algorithm implemented in MATLAB derives line segments from the image to model the fibers, identifying crossings by the intersections of the line segments. The binary image analysis algorithm implemented in MATLAB searches the image for unique patterns of 1s and 0s that represent the fiber intersection. The pattern matching algorithm implemented in Vision Assistant - LabVIEW, uses a pyramid value correlation function to match a reference template to the remainder of the fabric image to identify the crossings. Of the three algorithms, the binary image analysis method had the highest accuracy, while the pattern matching algorithm was fastest.more » « less
-
Digital knitting machines have the capability to reliably manufacture seamless, textured, and multi-material garments, but these capabilities are obscured by limiting CAD tools. Recent innovations in computational knitting build on emerging programming infrastructure that gives full access to the machine’s capabilities but requires an extensive understanding of machine operations and execution. In this paper, we contribute a critical missing piece of the knitting-machine programming pipeline–a program optimizer. Program optimization allows programmers to focus on developing novel algorithms that produce desired fabrics while deferring concerns of efficient machine operations to the optimizer. We present KODA, the Knit-program Optimization by Dependency Analysis method. KODA re-orders and reduces machine instructions to reduce knitting time, increase knitting reliability, and manage boilerplate operations that adjust the machine state. The result is a system that enables programmers to write readable and intuitive knitting algorithms while producing efficient and verified programsmore » « less
-
Illusion-knit fabrics reveal distinct patterns or images depending on the viewing angle. Artists have manually achieved this effect by exploiting microgeometry, i.e., small differences in stitch heights. However, past work in computational 3D knitting does not model or exploit designs based on stitch height variation. This paper establishes a foundation for exploring illusion knitting in the context of computational design and fabrication. We observe that the design space is highly constrained, elucidate these constraints, and derive strategies for developing effective, machine-knittable illusion patterns. We partially automate these strategies in a new interactive design tool that reduces difficult patterning tasks to familiar image editing tasks. Illusion patterns also uncover new fabrication challenges regarding mixed colorwork and texture; we describe new algorithms for mitigating fabrication failures and ensuring high-quality knit results.more » « less
An official website of the United States government

