skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Packaging Electronics on Textiles: Identifying Fiber Junctions for Automated Placement
Electronic textile (E-textile) research requires an understanding of the mechanical properties of fabric substrates used to build and support electronics. Because fibers are often non-uniform and fabrics are easily deformed, locating fiber junctions on the irregular surface is challenging, yet is essential for packaging electronics on textiles at the resolution of single fibers that deliver power and signals. In this paper, we demonstrate the need to identify fiber junctions in a task where microelectromechanical structures (MEMS) are integrated on fabrics. We discuss the benefits of fiber-aligned placement compared with random placement. Thereafter we compare three image processing algorithms to extract fiber junction locations from sample fabric images. The Hough line transform algorithm implemented in MATLAB derives line segments from the image to model the fibers, identifying crossings by the intersections of the line segments. The binary image analysis algorithm implemented in MATLAB searches the image for unique patterns of 1s and 0s that represent the fiber intersection. The pattern matching algorithm implemented in Vision Assistant - LabVIEW, uses a pyramid value correlation function to match a reference template to the remainder of the fabric image to identify the crossings. Of the three algorithms, the binary image analysis method had the highest accuracy, while the pattern matching algorithm was fastest.  more » « less
Award ID(s):
1828355
PAR ID:
10310619
Author(s) / Creator(s):
;
Date Published:
Journal Name:
15th International Manufacturing Science and Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fabrics and fibrous materials offer a soft, porous, and flexible substrate for microelectromechanical systems (MEMS) packaging in breathable, wearable formats that allow airflow. Device-on-fiber systems require developments in the field of E-Textiles including smart fibers, functional fiber intersections, textile circuit routing, and alignment methods that adapt to irregular materials. In this paper, we demonstrate a MEMS-on-fabric layout workflow that obtains fiber intersection locations from high-resolution fabric images. We implement an image processing algorithm to drive the MEMS layout software, creating an individualized MEMS “gripper” layout designed to grasp fibers on a specific fabric substrate during a wafer-to-fabric parallel transfer step. The efficiency of the algorithm in terms of a number of intersections identified on the complete image is analyzed. The specifications of the MEMS layout design such as the length of the MEMS gripper, spatial distribution, and orientation are derivable from the MATLAB routine implemented on the image. Furthermore, the alignment procedure, tolerance, and hardware setup for the alignment method of the framed sample fabric to the wafer processed using the custom gripper layout are discussed along with the challenges of the release of MEMS devices from the Si substrate to the fabric substrate. 
    more » « less
  2. null (Ed.)
    Studies with e-textile sensors embedded in garments are typically performed on static and controlled phantom models that do not reflect the dynamic nature of wearables. Instead, our objective was to understand the noise e-textile sensors would experience during real-world scenarios. Three types of sleeves, made of loose, tight, and stretchy fabrics, were applied to a phantom arm, and the corresponding fabric movement was measured in three dimensions using physical markers and image-processing software. Our results showed that the stretchy fabrics allowed for the most consistent and predictable clothing-movement (average displacement of up to −2.3 ± 0.1 cm), followed by tight fabrics (up to −4.7 ± 0.2 cm), and loose fabrics (up to −3.6 ± 1.0 cm). In addition, the results demonstrated better performance of higher elasticity (average displacement of up to −2.3 ± 0.1 cm) over lower elasticity (average displacement of up to −3.8 ± 0.3 cm) stretchy fabrics. For a case study with an e-textile sensor that relies on wearable loops to monitor joint flexion, our modeling indicated errors as high as 65.7° for stretchy fabric with higher elasticity. The results from this study can (a) help quantify errors of e-textile sensors operating “in-the-wild,” (b) inform decisions regarding the optimal type of clothing-material used, and (c) ultimately empower studies on noise calibration for diverse e-textile sensing applications. 
    more » « less
  3. Abstract Due to fiber swelling, textile fabrics containing hygroscopic fibers tend to decrease pore size under wet or increasing humidity and moisture conditions, the reverse being true. Nevertheless, for personal thermal regulation and comfort, the opposite is desirable, namely, increasing the fabric pore size under increasing humid and sweating conditions for enhanced ventilation and cooling, and a decreased pore size under cold and dry conditions for heat retention. This paper describes a novel approach to create such an unconventional fabric by emulating the structure of the plant leaf stomata by designing a water responsive polymer system in which the fabric pores increase in size when wet and decrease in size when dry. The new fabric increases its moisture permeability over 50% under wet conditions. Such a water responsive fabric can find various applications including smart functional clothing and sportswear. Graphical Abstract 
    more » « less
  4. Abstract Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring. 
    more » « less
  5. null (Ed.)
    Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile. 
    more » « less