Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.
more »
« less
Get Your Workload in Order: Game Theoretic Prioritization of Database Auditing
A wide variety of mechanisms, such as alert triggers and auditing routines, have been developed to notify administra- tors about types of suspicious activities in the daily use of large databases of personal and sensitive information. However, such mechanisms are limited in that: 1) the volume of such alerts is often substantially greater than the capabilities of resource- constrained organizations and 2) strategic attackers may disguise their actions or carefully choose which records they touch, thus evading auditing routines. To address these problems, we introduce a novel approach to database auditing that explicitly accounts for adversarial behavior by 1) prioritizing the order in which types of alerts are investigated and 2) providing an upper bound on how much resource to allocate for auditing each alert type. We model the interaction between a database auditor and potential attackers as a Stackelberg game in which the auditor chooses an auditing policy and attackers choose which records in a database to target. We further introduce an efficient approach that combines linear programming, column generation, and heuristic search to derive an auditing policy, in the form of a mixed strategy. We assess the performance of the policy selection method using a publicly available credit card application dataset, the results of which indicate that our method produces high-quality database audit policies, significantly outperforming baselines that are not based in a game theoretic framing.
more »
« less
- PAR ID:
- 10050103
- Date Published:
- Journal Name:
- International Conference on Data Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hidden moving target defense (HMTD) is a proactive defense strategy that is kept hidden from attackers by changing the reactance of transmission lines to thwart false data injection (FDI) attacks. However, alert attackers with strong capabilities pose additional risks to the HMTD and thus, it is much-needed to evaluate the hiddenness of the HMTD. This paper first summarizes two existing alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven alert attackers. Furthermore, this paper proposes a novel model-based alert attacker model that uses the MTD operation models to estimate the dispatched line reactance. The proposed attacker model can use the estimated line reactance to construct stealthy FDI attacks against HMTD methods that lack randomness. We propose a novel random-enabled HMTD (RHMTD) operation method, which utilizes random weights to introduce randomness and uses the derived hiddenness operation conditions as constraints. RHMTD is theoretically proven to be kept hidden from three alert attacker models. In addition, we analyze the detection effectiveness of the RHMTD against three alert attacker models. Simulation results on the IEEE 14-bus systems show that traditional HMTD methods fail to detect attacks by the model-based alert attacker, and RHMTD is kept hidden from three alert attackers and is effective in detecting attacks by three alert attackers.more » « less
-
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful “0-day” attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those “0-day” attacks to at least “n-day” attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches.more » « less
-
This paper considers network protection games for a heterogeneous network system with N nodes against cyber-attackers of two different types of intentions. The first type tries to maximize damage based on the value of each net-worked node, while the second type only aims at successful infiltration. A defender, by applying defensive resources to networked nodes, can decrease those nodes' vulnerabilities. Meanwhile, the defender needs to balance the cost of using defensive resources and potential security benefits. Existing literature shows that, in a Nash equilibrium, the defender should adopt different resource allocation strategies against different types of attackers. However, it could be difficult for the defender to know the type of incoming cyber-attackers. A Bayesian game is investigated considering the case that the defender is uncertain about the attacker's type. We demonstrate that the Bayesian equilibrium defensive resource allocation strategy is a mixture of the Nash equilibrium strategies from the games against the two types of attackers separately.more » « less
-
Almost half of the preventable deaths in emergency care can be associated with a medical delay. Understanding how clinicians experience delays can lead to improved alert designs to increase delay awareness and mitigation. In this paper, we present the findings from an iterative user-centered design process involving 48 clinicians to develop a prototype alert system for supporting delay awareness in complex medical teamwork such as trauma resuscitation. We used semi-structured interviews and card-sorting workshops to identify the most common delays and elicit design requirements for the prototype alert system. We then conducted a survey to refine the alert designs, followed by near-live, video-guided simulations to investigate clinicians' reactions to the alerts. We contribute to CSCW by designing a prototype alert system to support delay awareness in time-critical, complex teamwork and identifying four mechanisms through which teams mitigate delays.more » « less
An official website of the United States government

