Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Spatial-temporal allocation of resources is optimized to allocate electric scooters across urban areas, place charging stations for vehicles, and design efficient on-demand transit. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized methodologies have been used to tackle such problems, none of the approaches scale well for large-scale decision problems. We create a general approach to hierarchical planning that leverages structure in city-level CPS problems to tackle resource allocation under uncertainty. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from a major metropolitan area in the United States to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.more » « less
-
The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time of responders with a drastic reduction in computational time.more » « less
-
null (Ed.)This work presents a dashboard tool that helps emergency responders analyze and manage spatial-temporal incidents like crime and traffic accidents. It uses state-of-the-art statistical models to learn incident probabilities based on factors such as prior incidents, time and weather. The dashboard can then present historic and predicted incident distributions. It also allows responders to analyze how moving or adding depots (stations for emergency responders) affects average response times, and can make dispatching recommendations based on heuristics. Broadly, it is a one-stop tool that helps responders visualize historical data as well as plan for and respond to incidents.more » « less
-
The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time.more » « less
-
The integrity of democratic elections depends on voters’ access to accurate information. However, modern media environments, which are dominated by social media, provide malicious actors with unprecedented ability to manipulate elections via misinformation, such as fake news. We study a zerosum game between an attacker, who attempts to subvert an election by propagating a fake new story or other misinformation over a set of advertising channels, and a defender who attempts to limit the attacker’s impact. Computing an equilibrium in this game is challenging as even the pure strategy sets of players are exponential. Nevertheless, we give provable polynomial-time approximation algorithms for computing the defender’s minimax optimal strategy across a range of settings, encompassing different population structures as well as models of the information available to each player. Experimental results confirm that our algorithms provide nearoptimal defender strategies and showcase variations in the difficulty of defending elections depending on the resources and knowledge available to the defender.more » « less
-
A wide variety of mechanisms, such as alert triggers and auditing routines, have been developed to notify administra- tors about types of suspicious activities in the daily use of large databases of personal and sensitive information. However, such mechanisms are limited in that: 1) the volume of such alerts is often substantially greater than the capabilities of resource- constrained organizations and 2) strategic attackers may disguise their actions or carefully choose which records they touch, thus evading auditing routines. To address these problems, we introduce a novel approach to database auditing that explicitly accounts for adversarial behavior by 1) prioritizing the order in which types of alerts are investigated and 2) providing an upper bound on how much resource to allocate for auditing each alert type. We model the interaction between a database auditor and potential attackers as a Stackelberg game in which the auditor chooses an auditing policy and attackers choose which records in a database to target. We further introduce an efficient approach that combines linear programming, column generation, and heuristic search to derive an auditing policy, in the form of a mixed strategy. We assess the performance of the policy selection method using a publicly available credit card application dataset, the results of which indicate that our method produces high-quality database audit policies, significantly outperforming baselines that are not based in a game theoretic framing.more » « less