skip to main content


Title: Life Cycle Assessment of Aerogel Manufacture on Small and Large Scales: Weighing the Use of Advanced Materials in Oil Spill Remediation
Summary

Recent studies demonstrated that advanced aerogel composites (Aspen Aerogels®Spaceloft®[SL]) have the potential to transform oil remediation via high oil uptake capacity and selectivity, excellent reusability, and high mechanical strength. Understanding the life cycle environmental impacts of advanced aerogels can enable a more holistic decision‐making process when considering oil recovery technologies following a spill. Here, we perform a cradle‐to‐grave streamlined life cycle assessment (LCA) following International Organization for Standardization (ISO) 14040 2006 for SL weighed against the conventional oil sorbent material, polyurethane foam. The model included alternative use and disposal scenarios, such as single or multiple uses, and landfill, incinerator, and waste‐to‐energy (WTE) approaches for cleaning 1 cubic meter (m3) of light crude oil. Results showed that the ideal case for SL application was comprised of multiple use and WTE incineration (68% reduction in material use, approximately 7 × 103megajoules [MJ] of energy recovery from WTE), but SL offered energy and materials savings even when used once and disposed of via traditional means (i.e., landfill). In addition to evaluating these already‐scaled processes, we performed an anticipatory LCA for the laboratory‐scaled aerogel fabrication process that might inform the sustainable design of next‐generation aerogels. In particular, the model compared rapid supercritical extraction (RSCE) with two conventional supercritical extraction methods—alcohol and carbon dioxide supercritical extraction (ASCE and CSCE, respectively)—for silica aerogel monoliths. Our results showed that RSCE yielded a cumulative energy savings of more than 76 × 103and 100 × 103MJ for 1 m3of monolithic silica aerogel manufacturing compared to ASCE and CSCE, respectively.

 
more » « less
NSF-PAR ID:
10050468
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Industrial Ecology
Volume:
22
Issue:
6
ISSN:
1088-1980
Page Range / eLocation ID:
p. 1365-1377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transport of heat through windows accounts for more than 25% of heating and cooling losses in residential buildings. Silica-based aerogels are translucent with extremely low thermal conductivity, which make them attractive for incorporation into the interspaces of glazing units. Widespread incorporation of monolithic-silica-aerogel-based windows could result in significant energy savings associated with the heating and cooling of buildings. However, monolithic silica aerogels do not have the optical clarity of vision glass, due to light scattering by the solid matrix, and often have surface imperfections, both of which render these materials less appealing for glazing applications. Here, we demonstrate a variety of approaches to preparing aesthetically pleasing monolithic silica aerogel by a rapid supercritical extraction method for incorporation into glazing units, including: (1) process improvements that result in monoliths with higher visible light transmission; (2) innovative mold design for the preparation of uniform aerogel monoliths; (3) glazing designs that use thinner monoliths; and (4) the incorporation of artistic effects using dyes and laser etching to prepare glazing units with mosaic- or stained-glass-like patterns in which surface imperfections are perceived as features of the design rather than flaws. 
    more » « less
  2. Abstract

    Although spectrally selective materials play a key role in existing and emerging solar thermal technologies, temperature‐related degradation currently limits their use to below 700 °C in vacuum and even lower temperatures in air. Here a solar‐transparent refractory aerogel that offers stable performance up to 800 °C in air is demonstrated, which is significantly greater than its silica counterpart. This improved stability is attributed to the formation of a refractory aluminum silicate phase, which is synthesized using a conformal single cycle of atomic layer deposition within the high‐aspect‐ratio pores of silica aerogels. Based on direct heat loss measurements, the transparent refractory aerogel achieves a receiver efficiency of 75% at 100 suns and an absorber temperature of 700 °C, which is a 5% improvement over the state of the art. Transparent refractory aerogels may find widespread applicability in solar thermal technologies by enabling the use of lower‐cost optical focusing systems and eliminating the need for highly evacuated receivers. In particular, a shift to higher operating temperatures while maintaining a high receiver efficiency can enable the use of advanced supercritical CO2power cycles and ultimately translate to an ≈10% (absolute) improvement in solar‐to‐electrical conversion efficiency relative to existing linear concentrating systems.

     
    more » « less
  3. Abstract

    Aerogels are considered ideal candidates for various applications, because of their low bulk density, highly porous nature, and functional performance. However, the time intensive nature of the complex fabrication process limits their potential application in various fields. Recently, incorporation of a fibrous network has resulted in production of aerogels with improved properties and functionalities. A facile approach is presented to fabricate hybrid sol–gel electrospun silica‐cellulose diacetate (CDA)‐based nanofibers to generate thermally and mechanically stable nanofiber aerogels. Thermal treatment results in gluing the silica‐CDA network strongly together thereby enhancing aerogel mechanical stability and hydrophobicity without compromising their highly porous nature (>98%) and low bulk density (≈10 mg cm−3). X‐ray photoelectron spectroscopy and in situ Fourier‐transform infrared studies demonstrate the development of strong bonds between silica and the CDA network, which result in the fabrication of cross‐linked structure responsible for their mechanical and thermal robustness and enhanced affinity for oils. Superhydrophobic nature and high oleophilicity of the hybrid aerogels enable them to be ideal candidates for oil spill cleaning, while their flame retardancy and low thermal conductivity can be explored in various applications requiring stability at high temperatures.

     
    more » « less
  4. null (Ed.)
    Abstract The conventional manufacturing processes of aerogel insulation material is largely relying on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties are also examined. The proposed approach is found to have 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1. 
    more » « less
  5. Abstract A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n -heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n -heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid. 
    more » « less