This work focuses on fabrication of multi-hollow polyimide gel and aerogel particles from a surfactant-free oil-in-oil emulsion system using a microfluidic droplet generator operating under dripping mode. The multi-hollow gel and aerogel particles have strong potential in thermal insulation. Under jetting and tip-streaming regime of microfluidic flows, droplets are generated with no occluded liquid phase. The present study investigates a means of designing polyimide gel particles with plurality of internal liquid droplets by strategically manipulating the flow rates of the continuous and dispersed phase liquids through the microfluidic droplet generator. The multi-hollow polyimide aerogel particles obtained after supercritical drying of the gel particles present mesopores, high BET surface area, and excellent prospect for thermal insulation.
more »
« less
Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams
Abstract A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n -heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n -heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid.
more »
« less
- Award ID(s):
- 1826030
- PAR ID:
- 10396850
- Date Published:
- Journal Name:
- International Polymer Processing
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 0930-777X
- Page Range / eLocation ID:
- 427 to 441
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work examines the functional dependence of the efficiency of separation of oil−water emulsions on surfactant adsorption abilities of high surface area polymer gels. The work also develops an understanding of the factors and steps that are involved in emulsion separation processes using polymer gels. The work considers four polymer gels offering different surface energy values, namely, syndiotactic polystyrene (sPS), polyimide (PI), polyurea (PUA), and silica. The data reveal that surfactant adsorption abilities directly control the emulsion separation performance. The gels of sPS and PI destabilize the emulsions due to significant surfactant adsorption. The surfactant-lean oil droplets are then absorbed in the pores of sPS and PI gels due to the preferential wettability of the oil phase. The PUA and silica gels are more hydrophilic and show a lower surfactant adsorption ability. These gels cannot effectively remove the surfactant molecules from the emulsions, leading to a poor emulsion separation performance. The study uses simulation data to understand the adsorption characteristics of two poly(ethylene oxide)- poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants. The simulation results are used for the interpretation of emulsion separation performance by the gels.more » « less
-
Abstract Gallium-based liquid metals (LM) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 hours). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2 micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8 µm to 5 µm) and volume fraction (1% to 10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20 to 100 µm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates.more » « less
-
Aqueous foams are ubiquitous; they appear in products and processes that span the cosmetics, food, and energy industries. The versatile applicability of foams comes as a result of their intrinsic viscous and elastic properties; for example, foams are exploited as drilling fluids in enhanced oil recovery for their high viscosity. Recently, so-called capillary foams were discovered: a class of foams that have excellent stability under static conditions and whose flow properties have so far remained unexplored. The unique architecture of these foams, containing oil-coated bubbles and a gelled network of oil-bridged particles, is expected to affect foam rheology. In this work, we report the first set of rheological data on capillary foams. We study the viscoelastic properties of capillary foams by conducting oscillatory and steady shear tests. We compare our results on the rheological properties of capillary foams to those reported for other aqueous foams. We find that capillary foams, which have low gas volume fractions, exhibit long lasting rheological stability as well as a yielding behavior that is reminiscent of surfactant foams with high gas volume fractions.more » « less
-
Abstract Hydraulic fracturing of oil and gas wells is a water intensive process. Limited availability, cost and increasing government regulations restraining the use and disposal of fresh water have led to the need for alternative fracturing fluids. Using CO2 foam as a fracturing fluid can drastically reduce the need for water in hydraulic fracturing. We address the addition of polyelectrolyte complex nanoparticles (PECNP) to surfactant solutions to improve foam stability, durability and rheological properties at high foam qualities. Polyelectrolyte pH and polyanion/polycation ratios were varied to minimize particle size and maximize absolute zeta potential of the resulting nanoparticles. Rheological tests were conducted on foam systems of varying surfactant/PECNP ratios and different foam quality to understand the effect of shear on viscosity under simulated reservoir conditions of 40°C and 1300 psi. The same foam systems were tested for stability and durability in a view cell at reservoir conditions. Supercritical CO2 foam generated by surfactant alone resulted in short lived, low viscosity foam because of surfactant drainage from foam lamellae. However, addition of PECNP strengthens the foam film by swelling the film due to increased osmotic pressure and electrostatic forces. Electrostatic interactions reduce dynamic movement of surfactant micelles, thereby stabilizing the foam lamellae, which imparts high durability and viscosity to supercritical CO2 foams. From the rheology test results, it was concluded that increasing foam quality and the presence of PECNP resulted in improved viscosity. Also, foam systems with PECNP showed promising results compared with foam generated using surfactant alone in the view cell durability test. The addition of optimized polyelectrolyte nanoparticles to the surfactant can improve viscosity and durability of supercritical CO2 foam during hydraulic fracturing, which can lead to large reductions in water requirements.more » « less
An official website of the United States government

