skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust convergence analysis of distributed optimization algorithms
We present a unified framework for analyzing the convergence of distributed optimization algorithms by formulating a semidefinite program (SDP) which can be efficiently solved to bound the linear rate of convergence. Two different SDP formulations are considered. First, we formulate an SDP that depends explicitly on the gossip matrix of the network graph. This result provides bounds that depend explicitly on the graph topology, but the SDP dimension scales with the size of the graph. Second, we formulate an SDP that depends implicitly on the gossip matrix via its spectral gap. This result provides coarser bounds, but yields a small SDP that is independent of graph size. Our approach improves upon existing bounds for the algorithms we analyzed, and numerical simulations reveal that our bounds are likely tight. The efficient and automated nature of our analysis makes it a powerful tool for algorithm selection and tuning, and for the discovery of new algorithms as well.  more » « less
Award ID(s):
1656951
PAR ID:
10051001
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communication, Control, and Computing (Allerton), 2017 55th Annual Allerton Conference on
Page Range / eLocation ID:
1206 - 1212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions. 
    more » « less
  2. The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions. 
    more » « less
  3. We design new polynomial-time algorithms for recovering planted cliques in the semi-random graph model introduced by Feige and Kilian 2001. The previous best algorithms for this model succeed if the planted clique has size at least n2/3 in a graph with n vertices (Mehta, Mckenzie, Trevisan 2019 and Charikar, Steinhardt, Valiant 2017). Our algorithms work for planted-clique sizes approaching n1/2 -- the information-theoretic threshold in the semi-random model (Steinhardt 2017) and a conjectured computational threshold even in the easier fully-random model. This result comes close to resolving open questions by Feige 2019 and Steinhardt 2017. Our algorithms are based on higher constant degree sum-of-squares relaxation and rely on a new conceptual connection that translates certificates of upper bounds on biclique numbers in unbalanced bipartite Erdős--Rényi random graphs into algorithms for semi-random planted clique. The use of a higher-constant degree sum-of-squares is essential in our setting: we prove a lower bound on the basic SDP for certifying bicliques that shows that the basic SDP cannot succeed for planted cliques of size k=o(n2/3). We also provide some evidence that the information-computation trade-off of our current algorithms may be inherent by proving an average-case lower bound for unbalanced bicliques in the low-degree-polynomials model. 
    more » « less
  4. In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 0 bits to their neighbors in each round, and the case where nodes can advertise 1 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system. We prove that our existing algorithms for dynamic network topologies and a single advertising bit solve this relaxed version up to a polynomial factor faster (in network size) for many parameters. These are the first known gossip results for the mobile telephone model, and they significantly expand our understanding of how to communicate and coordinate in this increasingly relevant setting. 
    more » « less
  5. Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random perturbation of the cost matrix, with high probability, we show that all approximate second-order stationary points are approximate global optima for the penalty formulation of appropriately rank-constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion. 
    more » « less