skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Algorithms Approaching the Threshold for Semi-random Planted Clique
We design new polynomial-time algorithms for recovering planted cliques in the semi-random graph model introduced by Feige and Kilian 2001. The previous best algorithms for this model succeed if the planted clique has size at least n2/3 in a graph with n vertices (Mehta, Mckenzie, Trevisan 2019 and Charikar, Steinhardt, Valiant 2017). Our algorithms work for planted-clique sizes approaching n1/2 -- the information-theoretic threshold in the semi-random model (Steinhardt 2017) and a conjectured computational threshold even in the easier fully-random model. This result comes close to resolving open questions by Feige 2019 and Steinhardt 2017. Our algorithms are based on higher constant degree sum-of-squares relaxation and rely on a new conceptual connection that translates certificates of upper bounds on biclique numbers in unbalanced bipartite Erdős--Rényi random graphs into algorithms for semi-random planted clique. The use of a higher-constant degree sum-of-squares is essential in our setting: we prove a lower bound on the basic SDP for certifying bicliques that shows that the basic SDP cannot succeed for planted cliques of size k=o(n2/3). We also provide some evidence that the information-computation trade-off of our current algorithms may be inherent by proving an average-case lower bound for unbalanced bicliques in the low-degree-polynomials model.  more » « less
Award ID(s):
2211971
NSF-PAR ID:
10435077
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Symposium on Theory of Computing, STOC
Issue:
2023
Page Range / eLocation ID:
1918 to 1926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider a system of m polynomial equations {pi(x)=bi}i≤m of degree D≥2 in n-dimensional variable x∈ℝn such that each coefficient of every pi and bis are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest m -- the algorithmic threshold -- for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every d∈ℕ, the (n+m)O(d)-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever m≥O(n)⋅(nd)D−1. We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all d. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at m≳O˜(n)⋅n(1−δ)(D−1) for 2nδ-time algorithms for all δ. 
    more » « less
  2. Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph where each vertex connects to at least γ fraction of the other vertices. Quasi-clique is a natural definition for dense structures, so finding large and hence statistically significant quasi-cliques is useful in applications such as community detection in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive, and even a recent algorithm for mining large maximal quasi-cliques is flawed and can lead to a lot of repeated searches. This paper proposes a parallel solution for mining maximal quasi-cliques that is able to fully utilize CPU cores. Our solution utilizes divide and conquer to decompose the workloads into independent tasks for parallel mining, and we addressed the problem of (i) drastic load imbalance among different tasks and (ii) difficulty in predicting the task running time and the time growth with task subgraph size, by (a) using a timeout-based task decomposition strategy, and by (b) utilizing a priority task queue to schedule long-running tasks earlier for mining and decomposition to avoid stragglers. Unlike our conference version in PVLDB 2020 where the solution was built on a distributed graph mining framework called G-thinker, this paper targets a single-machine multi-core environment which is more accessible to an average end user. A general framework called T-thinker is developed to facilitate the programming of parallel programs for algorithms that adopt divide and conquer, including but not limited to our quasi-clique mining algorithm. Additionally, we consider the problem of directly mining large quasi-cliques from dense parts of a graph, where we identify the repeated search issue of a recent method and address it using a carefully designed concurrent trie data structure. Extensive experiments verify that our parallel solution scales well with the number of CPU cores, achieving 26.68× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges with 32 mining threads. Additionally, mining large quasi-cliques from dense parts can provide an additional speedup of up to 89.46×. 
    more » « less
  3. null (Ed.)
    The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-ε and rate Ω(ε 2 ) (where an upper bound of O(ε 2 log(1/ε)) is known). Ta-Shma [STOC 2017] gave an explicit construction of ε-balanced binary codes, where any two distinct codewords are at a distance between 1/2-ε/2 and 1/2+ε/2, achieving a near optimal rate of Ω(ε 2+β ), where β→ 0 as ε→ 0. We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for ε-balanced codes with block length N and rate Ω(ε 2+β ) in this family: -For all , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N Oε,β(1) . -For any fixed constant β independent of ε, there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (log(1/ε)) O(1) ·N Oβ(1) . -For any , there are explicit ε-balanced codes with rate Ω(ε 2+β ) which can be list decoded up to error 1/2-ε ' in time N Oε,ε' ,β(1), where ε ' ,β→ 0 as ε→ 0. The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in ε. Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction. 
    more » « less
  4. null (Ed.)
    Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph g = (Vg, Eg) where each vertex ν ∈ Vg connects to at least γ fraction of the other vertices (i.e., ⌈γ · (|Vg|- 1)⌉ vertices) in g. Quasi-clique is one of the most natural definitions for dense structures useful in finding communities in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive. In this paper, we design parallel algorithms for mining maximal quasi-cliques on G-thinker, a distributed graph mining framework that decomposes mining into compute-intensive tasks to fully utilize CPU cores. We found that directly using G-thinker results in the straggler problem due to (i) the drastic load imbalance among different tasks and (ii) the difficulty of predicting the task running time. We address these challenges by redesigning G-thinker's execution engine to prioritize long-running tasks for execution, and by utilizing a novel timeout strategy to effectively decompose long-running tasks to improve load balancing. While this system redesign applies to many other expensive dense subgraph mining problems, this paper verifies the idea by adapting the state-of-the-art quasi-clique algorithm, Quick, to our redesigned G-thinker. Extensive experiments verify that our new solution scales well with the number of CPU cores, achieving 201× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges in a 16-node cluster. 
    more » « less
  5. Clique-counting is a fundamental problem that has application in many areas eg. dense subgraph discovery, community detection, spam detection, etc. The problem of k-clique-counting is difficult because as k increases, the number of k-cliques goes up exponentially. Enumeration algorithms (even parallel ones) fail to count k-cliques beyond a small k. Approximation algorithms, like TuránShadow have been shown to perform well upto k = 10, but are inefficient for larger cliques. The recently proposed Pivoter algorithm significantly improved the state-of-the-art and was able to give exact counts of all k-cliques in a large number of graphs. However, the clique counts of some graphs (for example, com-lj) are still out of reach of these algorithms. We revisit the TuránShadow algorithm and propose a generalized framework called YACC that leverages several insights about real-world graphs to achieve faster clique-counting. The bottleneck in TuránShadow is a recursive subroutine whose stopping condition is based on a classic result from extremal combinatorics called Turán's theorem. This theorem gives a lower bound for the k-clique density in a subgraph in terms of its edge density. However, this stopping condition is based on a worst-case graph that does not reflect the nature of real-world graphs. Using techniques for quickly discovering dense subgraphs, we relax the stopping condition in a systematic way such that we get a smaller recursion tree while still maintaining the guarantees provided by TuránShadow. We deploy our algorithm on several real-world data sets and show that YACC reduces the size of the recursion tree and the running time by over an order of magnitude. Using YACC, we are able to obtain clique counts for several graphs for which clique-counting was infeasible before, including com-lj. 
    more » « less