skip to main content


Title: Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random perturbation of the cost matrix, with high probability, we show that all approximate second-order stationary points are approximate global optima for the penalty formulation of appropriately rank-constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion.  more » « less
Award ID(s):
1719558
NSF-PAR ID:
10098817
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 31st Conference On Learning Theory, PMLR
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider semidefinite programs (SDPs) of size n with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix Y of size nk such that X = Y Y  is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced, and positive semidefiniteness is naturally enforced. However, optimization in Y is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided k is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To answer it, under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with k scaling like the square root of the number of constraints (up to log factors). Moreover, we bound the optimality gap at the approximate solution of the perturbed problem with respect to the original problem. We particularize our results to an SDP relaxation of phase retrieval. 
    more » « less
  2. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less
  3. Koopman operators provide tractable means of learning linear approximations of non-linear dynamics. Many approaches have been proposed to find these operators, typically based upon approximations using an a-priori fixed class of models. However, choosing appropriate models and bounding the approximation error is far from trivial. Motivated by these difficulties, in this paper we propose an optimization based approach to learning Koopman operators from data. Our results show that the Koopman operator, the associated Hilbert space of observables and a suitable dictionary can be obtained by solving two rank-constrained semi-definite programs (SDP). While in principle these problems are NP-hard, the use of standard relaxations of rank leads to convex SDPs. 
    more » « less
  4. Semidefinite programs (SDPs) often arise in relaxations of some NP-hard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The re-weighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rank-minimized SDPs through interior-point and first-order algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method. 
    more » « less
  5. Low-rank methods for semi-definite programming (SDP) have gained a lot of interest recently, especially in machine learning applications. Their analysis often involves determinant-based or Schatten-norm penalties, which are difficult to implement in practice due to high computational efforts. In this paper, we propose Entropy-Penalized Semi-Definite Programming (EP-SDP), which provides a unified framework for a broad class of penalty functions used in practice to promote a low-rank solution. We show that EP-SDP problems admit an efficient numerical algorithm, having (almost) linear time complexity of the gradient computation; this makes it useful for many machine learning and optimization problems. We illustrate the practical efficiency of our approach on several combinatorial optimization and machine learning problems.

     
    more » « less