skip to main content


Title: Molecular weight dependent structure and charge transport in MAPLE‐deposited poly(3‐hexylthiophene) thin films
ABSTRACT

In this work, poly(3‐hexylthiophene) (P3HT) films prepared using the matrix‐assisted pulsed laser evaporation (MAPLE) technique are shown to possess morphological structures that are dependent on molecular weight (MW). Specifically, the structures of low MW samples of MAPLE‐deposited film are composed of crystallites/aggregates embedded within highly disordered environments, whereas those of high MW samples are composed of aggregated domains connected by long polymer chains. Additionally, the crystallite size along the side‐chain (100) direction decreases, whereas the conjugation length increases with increasing molecular weight. This is qualitatively similar to the structure of spin‐cast films, though the MAPLE‐deposited films are more disordered. In‐plane carrier mobilities in the MAPLE‐deposited samples increase with MW, consistent with the notion that longer chains bridge adjacent aggregated domains thereby facilitating more effective charge transport. The carrier mobilities in the MAPLE‐deposited simples are consistently lower than those in the solvent‐cast samples for all molecular weights, consistent with the shorter conjugation length in samples prepared by this deposition technique. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 652–662

 
more » « less
NSF-PAR ID:
10051168
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
56
Issue:
8
ISSN:
0887-6266
Page Range / eLocation ID:
p. 652-663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity againstStaphylococcus aureusandEscherichia coliwas assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 24–34

     
    more » « less
  2. ABSTRACT

    The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3‐hexylthyophene (P3HT) were determined for a range of materials of weight‐average molecular weights,Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one‐phase, paraffinic‐like structure comprised of chain‐extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials ofMw = 48 kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two‐phase structure with increasingMw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 31–35

     
    more » « less
  3. ABSTRACT

    Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1014–1026

     
    more » « less
  4. ABSTRACT

    A novel class of copolymers containing polyimide and polyurea blocks with unique physical properties and capable of providing effective protection to aluminum alloy 2024‐T3 substrate against corrosion has been prepared. The structure and properties of polyurea‐b‐polyimide (PUI) copolymers were controlled by varying the co‐monomer concentration. The PUI block copolymer can reorganize into a supra‐molecular structure by forming intra‐ and inter‐hydrogen bonding interactions between adjacent copolymer chains, resulting in a dense and compact structure capable of protecting the imide ring from hydrolysis when exposed to a corrosive environment. Apart from minimized surface hydrolysis, the establishment of compacted morphology also leads to a drastically improved barrier property and reduced diffusivity. The corrosion rate and polarization resistances of PUI‐coated aluminum alloys were measured by using direct current polarization technique. Increasing polyurea concentration resulted in a remarkable decrease in diffussivity and surface energy, consistent with the measured remarkable increase in the coatings durability and corrosion performance. Corrosion inhibition tests were carried out for more than 30 weeks in a saturated NaCl solution containing 3.5 wt % of salt. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 45861.

     
    more » « less
  5. Abstract

    Organized nano‐ and microstructures of molecular semiconductors display interesting optical and photonic properties, and enhanced charge carrier mobilities, as compared to disordered thin films. However, known directed‐growth and self‐organization strategies cannot create structured molecular heterojunctions and cannot be practically incorporated into existing device fabrication routines to create large‐area optoelectronic devices. Here, an ultrathin (<2 nm) seed layer of the compound coronene creates 1D nanostructures of an electron‐transporting molecule (IFD) is shown, which possesses an intrinsic proclivity to form disordered thin films in the absence of the seed layer. It is revealed that nanostructured IFD films exhibit enhanced light absorption and emission, and greater electron mobilities, as compared to amorphous counterparts. This seed layer strategy creates uniform IFD nanowires over large areas of up to 18 mm2at low processing temperatures. Notably, the coronene seed layer creates IFD nanowires when applied over either oxide surfaces or predeposited organic layers, meaning that this structuring approach can be integrated into diode manufacturing routines to realize large‐area flexible optoelectronic devices. Flexible organic light‐emitting diodes and fullerene‐free organic solar cells containing IFD nanowires in the photoactive layer to demonstrate that molecular nanostructures can lead to robust, large‐area device arrays on flexible substrates being fabricated.

     
    more » « less