skip to main content


Title: Age-dependent differences in learning to control a robot arm using a body-machine interface
Abstract

Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations.

 
more » « less
Award ID(s):
1703735
NSF-PAR ID:
10153361
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations. 
    more » « less
  2. Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. 
    more » « less
  3. Abstract

    Examining age differences in motor learning using real‐world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9‐year‐olds, 12‐year‐olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9‐year‐old and 12‐year‐old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning.

     
    more » « less
  4. Abstract Research Highlights

    Children and adults conceptually and perceptually categorize speech and song from age 4.

    Listeners use F0 instability, harmonicity, spectral flux, and utterance duration to determine whether vocal stimuli sound like song.

    Acoustic cue weighting changes with age, becoming adult‐like at age 8 for perceptual categorization and at age 12 for conceptual differentiation.

    Young children are still learning to categorize speech and song, which leaves open the possibility that music‐ and language‐specific skills are not so domain‐specific.

     
    more » « less
  5. Many political movements across the world today define citizenship in exclusionary ethnic or religious terms. This study extends research on ethnic–national associations in adults to children, adding to the relatively sparse literature on the development of national associations in children and in nonwestern contexts. Explicit and implicit religious–national associations were examined in a sample of 160 nine‐ to sixteen‐year‐olds (79 Hindu; 81 Muslim) in Gujarat, India. Results suggest that while Hindu children show a strong Indian = Hindu association by age 9, Muslim children appear to be buffered from this association. Furthermore, this association uniquely predicts variance in children’s attitudes about social policy and their concept of nationality, above and beyond their age, religion, and intergroup attitudes.

     
    more » « less