skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autofocus for SWIR facial imagery utilizing Haar wavelets
The task of automatically assessing and adjusting image quality, when capturing face images using any band-specific camera sensor, can be achieved by eliminating a variety of acquisition parameters such as illumination. One such parameter related to image quality is sharpness. If it is not accurately estimated during data collection, it may affect the quality of the overall face image dataset and thus face recognition accuracy. While manually focusing each camera on the target (human face) can result in sharp looking face images, the process can be cumbersome for the operators and the subjects and, thus, it increases data collection acquisition time. In this work, we developed an electromechanical based system that automatically assesses face image sharpness, prior to capture rather than necessitating post-processing schemes. Various blur quality factors and constraints have been empirically evaluated, before determining the algorithmic steps of our proposed system. This paper discusses the implementation of this system in a live operating system.  more » « less
Award ID(s):
1650474 1066197
PAR ID:
10053530
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Symposium on Technologies for Homeland Security (HST)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Poor-quality facial images pose challenges in biometric authentication, especially in passport photo acquisition and recognition. This study proposes a novel and open-source solution to address these issues by introducing a real-time facial image quality analysis utilizing computer vision technology on a low-power single-board computer. We present an open-source complete hardware solution that consists of a Jetson processor, a 16 MP autofocus RGB camera, a custom enclosure, and a touch sensor LCD for user interaction. To ensure the integrity and confidentiality of captured facial data, Advanced Encryption Standard (AES) is used for secure image storage. Using the pilot data collection, the system demonstrated its ability to capture high-quality images, achieving 98.98% accuracy in storing images of acceptable quality. This open-source, readily deployable, secure system offers promising potential for diverse real-time applications such as passport verification, security systems, etc. 
    more » « less
  2. Facial recognition technology is becoming increasingly ubiquitous nowadays. Facial recognition systems rely upon large amounts of facial image data. This raises serious privacy concerns since storing this facial data securely is challenging given the constant risk of data breaches or hacking. This paper proposes a privacy-preserving face recognition and verification system that works without compromising the user’s privacy. It utilizes sensor measurements captured by a lensless camera - FlatCam. These sensor measurements are visually unintelligible, preserving the user’s privacy. Our solution works without the knowledge of the camera sensor’s Point Spread Function and does not require image reconstruction at any stage. In order to perform face recognition without information on face images, we propose a Discrete Cosine Transform (DCT) domain sensor measurement learning scheme that can recognize faces without revealing face images. We compute a frequency domain representation by computing the DCT of the sensor measurement at multiple resolutions and then splitting the result into multiple subbands. The network trained using this DCT representation results in huge accuracy gains compared to the accuracy obtained after directly training with sensor measurement. In addition, we further enhance the security of the system by introducing pseudo-random noise at random DCT coefficient locations as a secret key in the proposed DCT representation. It is virtually impossible to recover the face images from the DCT representation without the knowledge of the camera parameters and the noise locations. We evaluated the proposed system on a real lensless camera dataset - the FlatCam Face dataset. Experimental results demonstrate the system is highly secure and can achieve a recognition accuracy of 93.97% while maintaining strong user privacy. 
    more » « less
  3. null (Ed.)
    Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building. 
    more » « less
  4. null (Ed.)
    Routine blood pressure (BP) measurement in pregnancy is commonly performed using automated oscillometric devices. Since no wireless oscillometric BP device has been validated in preeclamptic populations, a simple approach for capturing readings from such devices is needed, especially in low-resource settings where transmission of BP data from the field to central locations is an important mechanism for triage. To this end, a total of 8192 BP readings were captured from the Liquid Crystal Display (LCD) screen of a standard Omron M7 self-inflating BP cuff using a cellphone camera. A cohort of 49 lay midwives captured these data from 1697 pregnant women carrying singletons between 6 weeks and 40 weeks gestational age in rural Guatemala during routine screening. Images exhibited a wide variability in their appearance due to variations in orientation and parallax; environmental factors such as lighting, shadows; and image acquisition factors such as motion blur and problems with focus. Images were independently labeled for readability and quality by three annotators (BP range: 34–203 mm Hg) and disagreements were resolved. Methods to preprocess and automatically segment the LCD images into diastolic BP, systolic BP and heart rate using a contour-based technique were developed. A deep convolutional neural network was then trained to convert the LCD images into numerical values using a multi-digit recognition approach. On readable low- and high-quality images, this proposed approach achieved a 91% classification accuracy and mean absolute error of 3.19 mm Hg for systolic BP and 91% accuracy and mean absolute error of 0.94 mm Hg for diastolic BP. These error values are within the FDA guidelines for BP monitoring when poor quality images are excluded. The performance of the proposed approach was shown to be greatly superior to state-of-the-art open-source tools (Tesseract and the Google Vision API). The algorithm was developed such that it could be deployed on a phone and work without connectivity to a network. 
    more » « less
  5. Many promising applications of supervised machine learning face hurdles in the acquisition of labeled data in sufficient quantity and quality, creating an expensive bottleneck. To overcome such limitations, techniques that do not depend on ground truth labels have been studied, including weak supervision and generative modeling. While these techniques would seem to be usable in concert, improving one another, how to build an interface between them is not well-understood. In this work, we propose a model fusing programmatic weak supervision and generative adversarial networks and provide theoretical justification motivating this fusion. The proposed approach captures discrete latent variables in the data alongside the weak supervision derived label estimate. Alignment of the two allows for better modeling of sample-dependent accuracies of the weak supervision sources, improving the estimate of unobserved labels. It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels. Additionally, its learned latent variables can be inspected qualitatively. The model outperforms baseline weak supervision label models on a number of multiclass image classification datasets, improves the quality of generated images, and further improves end-model performance through data augmentation with synthetic samples. 
    more » « less