skip to main content


Title: Mechanically Versatile Soft Machines through Laminar Jamming
Abstract

There are two major structural paradigms in robotics: soft machines, which are conformable, durable, and safe; and traditional rigid robots, which are fast, precise, and capable of applying high forces. Here, the paradigms are bridged by enabling soft machines to behave like traditional rigid robots on command. This task is accomplished via laminar jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly coupled through friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. Rigorous analytical and finite element models of laminar jamming are developed, and jamming structures are experimentally characterized to show that the models are highly accurate. Then jamming structures are integrated into soft machines to enable them to selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The models allow jamming structures to efficiently meet arbitrary performance specifications, and the physical demonstrations illustrate how to construct systems that can behave like either soft machines or traditional rigid robots at will, such as continuum manipulators that can rapidly have joints appear and disappear. This study aims to foster a new generation of mechanically versatile machines and structures that cannot simply be classified as “soft” or “rigid.”

 
more » « less
Award ID(s):
1637838
NSF-PAR ID:
10053664
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
17
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract

    Variable stiffness structures lie at the nexus of soft robots and traditional robots as they enable the execution of both high-force tasks and delicate manipulations. Laminar jamming structures, which consist of thin flexible sheets encased in a sealed chamber, can alternate between a rigid state when a vacuum is applied and a flexible state when the layers are allowed to slide in the absence of a pressure gradient. In this work, an additional mode of controllability is added by clamping and unclamping the ends of a simple laminar jamming beam structure. Previous works have focused on the translational degree of freedom that may be controlled via vacuum pressure; here we introduce a rotational degree of freedom that may be independently controlled with a clamping mechanism. Preliminary results demonstrate the ability to switch between three states: high stiffness (under vacuum), translational freedom (with clamped ends, no vacuum), and rotational freedom (with ends free to slide, no vacuum).

     
    more » « less
  2. Materials capable of dramatically changing their stiffness along specific directions in response to an external stimulus can enable the design of novel robots that can quickly switch between soft/highly–deformable and rigid/load–bearing states. While the jamming transition in discrete media has recently been demonstrated to be a powerful mechanism to achieve such variable stiffness, the lack of numerical tools capable of predicting the mechanical response of jammed media subjected to arbitrary loading conditions has limited the advancement of jamming-based robots. To overcome this limitation, we introduce a 3D finite–element-based numerical tool that predicts the mechanical response of pressurized, infinitely–extending discrete media subjected to arbitrary loading conditions. We demonstrate the capabilities of our numerical tool by investigating the response of periodic laminar and fibrous media subjected to various types of loadings. We expect this work to foster further numerical studies on jamming–based soft robots and structures by facilitating their design, as well as providing a foundation for combining various types of jamming media to create a new generation of tunable composites. 
    more » « less
  3. Abstract

    Numerous animals adapt their stiffness during natural motions to increase efficiency or environmental adaptability. For example, octopuses stiffen their tentacles to increase efficiency during reaching, and several species adjust their leg stiffness to maintain stability when running across varied terrain. Inspired by nature, variable‐stiffness machines can switch between rigid and soft states. However, existing variable‐stiffness systems are usually purpose‐built for a particular application and lack universal adaptability. Here, reconfigurable stiffness‐changing skins that can stretch and fold to create 3D structures or attach to the surface of objects to influence their rigidity are presented. These “jamming skins” employ vacuum‐powered jamming of interleaved, discrete planar elements, enabling 2D stretchability of the skin in its soft state. Stretching allows jamming skins to be reversibly shaped into load‐bearing, functional tools on‐demand. Additionally, they can be attached to host structures with complex curvatures, such as robot arms and portions of the human body, to provide support or create a mold. We also show how multiple skins can work together to modify the workspace of a continuum robot by creating instantaneous joints. Jamming skins thus serve as a reconfigurable approach to creating tools and adapting structural rigidity on‐demand.

     
    more » « less
  4. Abstract

    The ultimate goal of the advancements in bioelectronics and robotics is the creation of seamless interfaces between artificial devices and biological structures. Current efforts in this area have been focused on designing biocompatible, mechanically compliant, and minimally invasive electronic and robotic systems for a range of applications, such as motor control and sweat sensing. The purposeful design of bioelectronic and robotic systems using the principles of biomimicry enables the creation of biocompatible and life‐like machines and electronics. The success of such approaches relies on the new development and applications of soft materials, as well as methods of actuation and sensing that are inspired, either by composition, function, or properties, of the naturally occurring organisms. A combination of rigid structural components, soft actuators, and flexible sensors can enable the integration of such devices with biological organisms and eventually human users. In this review, we highlight the recent advances in biomimetic soft robotics and bioelectronics. We describe the soft robotic fabrication toolbox and modern solution in bioelectronics that, in our opinion, will enable the fusion of these fields by creating robotic bioelectronic systems. Future development in this area will require substantial integration of adaptable and responsive components at the biointerfaces.

     
    more » « less
  5. Abstract

    Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response.

     
    more » « less