Variable stiffness structures lie at the nexus of soft robots and traditional robots as they enable the execution of both high-force tasks and delicate manipulations. Laminar jamming structures, which consist of thin flexible sheets encased in a sealed chamber, can alternate between a rigid state when a vacuum is applied and a flexible state when the layers are allowed to slide in the absence of a pressure gradient. In this work, an additional mode of controllability is added by clamping and unclamping the ends of a simple laminar jamming beam structure. Previous works have focused on the translational degree of freedom that may be controlled via vacuum pressure; here we introduce a rotational degree of freedom that may be independently controlled with a clamping mechanism. Preliminary results demonstrate the ability to switch between three states: high stiffness (under vacuum), translational freedom (with clamped ends, no vacuum), and rotational freedom (with ends free to slide, no vacuum).
more » « less- Award ID(s):
- 1734117
- PAR ID:
- 10206734
- Date Published:
- Journal Name:
- ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Continuous layer jamming is an effective tunable stiffness mechanism that utilizes vacuum to vary friction between laminates enclosed in a membrane. In this paper, we present a discrete layer jamming mechanism that is composed of a multilayered beam and multiple variable pressure clamps placed discretely along the beam; system stiffness can be varied by changing the pressure applied by the clamps. In comparison to continuous layer jamming, discrete layer jamming is simpler as it can be implemented with dynamic variable pressure actuators for faster control, better portability, and no sealing issues due to no need for an air supply. Design and experiments show that discrete layer jamming can be used for a variable stiffness co-robot arm. The concept is validated by quasi-static cantilever bending experiments. The measurements show that clamping 10% of the beam area with two clamps increases the bending stiffness by around 17 times when increasing the clamping pressure from 0 to 3 MPa. Computational case studies using finite element analysis for the five key parameters are presented, including clamp location, clamp width, number of laminates, friction coefficient, and number of clamps. Clamp location, number of clamps, and number of laminates are found to be most useful for optimizing a discrete layer jamming design. Actuation requirements for a variable pressure clamp are presented based on results from laminate beam compression tests.more » « less
-
Abstract There are two major structural paradigms in robotics: soft machines, which are conformable, durable, and safe; and traditional rigid robots, which are fast, precise, and capable of applying high forces. Here, the paradigms are bridged by enabling soft machines to behave like traditional rigid robots on command. This task is accomplished via laminar jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly coupled through friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. Rigorous analytical and finite element models of laminar jamming are developed, and jamming structures are experimentally characterized to show that the models are highly accurate. Then jamming structures are integrated into soft machines to enable them to selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The models allow jamming structures to efficiently meet arbitrary performance specifications, and the physical demonstrations illustrate how to construct systems that can behave like either soft machines or traditional rigid robots at will, such as continuum manipulators that can rapidly have joints appear and disappear. This study aims to foster a new generation of mechanically versatile machines and structures that cannot simply be classified as “soft” or “rigid.”
-
Abstract This article presents a novel soft robotic gripper with a high payload capacity based on the layer jamming technology. Soft robots have a high adaptability, however suffer a low payload capacity. To overcome these conflicting challenges, here we introduce a 3D printed multi-material gripper that integrates jamming layers for enhancing payload capacity. By inflating the internal air chamber with positive pressure, the finger can be actuated to a large bending angle for adapting complex shapes. Layers of jamming sheets are bounded on the finger structure and are then sealed inside a vacuum bag. When a high payload is desired, air inside the vacuum bag is drawn out and a negative air pressure is applied to the jamming layers, which leads to the gripper locked at the actuated shape. To evaluate the performance of the gripper, we conducted extensive tests including actuation, stiffness variation, typical payload capacity, and adaptability. The results show that our gripper is not only highly adaptable just like most soft grippers but also more importantly capable of grasping heavy (about 6–10 kg) objects comparable to rigid-body counterparts.
-
Abstract Jamming is a structural phenomenon that provides tunable mechanical behavior. A jamming structure typically consists of a collection of elements with low effective stiffness and damping. When a pressure gradient, such as vacuum, is applied, kinematic and frictional coupling increase, resulting in dramatically altered mechanical properties. Engineers have used jamming to build devices from tunable‐stiffness grippers to tunable‐damping landing gear. This study presents a rigorous framework that systematically guides the design of jamming structures for target applications. The force‐deflection behavior of major types of jamming structures (i.e., grain, fiber, and layer) in fundamental loading conditions (e.g., tension, shear, and bending) is compared. High‐performing pairs (e.g., grains in compression, layers in shear, and bending) are identified. Parameters that go into designing, fabricating, and actuating a jamming structure (e.g., scale, material, geometry, and actuator) are described, along with their effects on functional metrics. Two key methods to expand on the design space of jamming structures are introduced: using structural design to achieve effective tunable‐impedance behavior in specific loading directions, and creating hybrid jamming structures to utilize the advantages of different types of jamming. Collectively, this study elaborates and extends the jamming design space, providing a conceptual modeling framework for jamming‐based structures.
-
Flexures provide precise motion control without friction or wear. Variable impedance mechanisms enable adapt- able and robust interactions with the environment. This paper combines the advantages of both approaches through layer jamming. Thin sheets of complaint material are encased in an airtight envelope, and when connected to a vacuum, the bending stiffness and damping increase dramatically. Using layer jamming structures as flexure elements leads to mechan- ical systems that can actively vary stiffness and damping. This results in flexure mechanisms with the versatility to transition between degrees of freedom and degrees of constraint and to tune impact response. This approach is used to create a 2-DOF, jamming-based, tunable impedance robotic wrist that enables passive hybrid force/position control for contact tasks.more » « less