skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Privacy preservation in a continuous-time static average consensus algorithm over directed graphs
In this paper, we study the problem of privacy preservation of the continuous-time Laplacian static average consensus algorithm using additive perturbation signals. We consider this problem over a strongly connected and weight-balanced digraph. Starting from a local reference value, in static average consensus algorithm each agent constantly communicates with its neighboring agents to update its local state to compute the average of the reference values across the network. Since every agent transmits its local reference value to its in-neighbors, the reference value of the agents are trivially disclosed. In this paper, we investigate the possibility of preserving the privacy of the reference value of the agents by adding admissible perturbation signals to the local dynamics and the transmitted out signals of the agents. Admissible additive perturbation signals are those signals that do not perturb the final convergence point of the algorithm from the average of the reference values of the agents. Our results show that if an adversarial agent has access to the output of another agent and all the input signals transmitted to that agent, the adversary can discover the private reference value of that agent, regardless of the perturbation signals. Otherwise, the privacy of the agent can be preserved. We demonstrate our results through a numerical example.  more » « less
Award ID(s):
1653838
PAR ID:
10053787
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
0743-1619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article is a study on the use of additive obfuscation signals to keep the reference values of the agents in the continuous-time Laplacian average consensus algorithm private from eavesdroppers. Obfuscation signals are perturbations that agents add to their local dynamics and their transmitted-out messages to conceal their private reference values. An eavesdropper is an agent inside or outside the network that has access to some subset of the interagent communication messages, and its knowledge set also includes the network topology. Rather than focusing on using a zero-sum and vanishing additive signal, our work determines the necessary and sufficient conditions that define the set of admissible obfuscation signals that do not perturb the convergence point of the algorithm from the average of the reference values of the agents. Of theoretical interest, our results show that this class includes nonvanishing signals as well. Given this broader class of admissible obfuscation signals, we define a deterministic notion of privacy preservation. In this definition, privacy preservation for an agent means that neither the private reference value nor a finite set of values to which the private reference value of the agent belongs to can be obtained. Then, we evaluate the agents’ privacy against eavesdroppers with different knowledge sets. 
    more » « less
  2. A critical factor for expanding the adoption of networked solutions is ensuring local data privacy of in-network agents implementing a distributed algorithm. In this paper, we consider privacy preservation in the distributed optimization problem in the sense that local cost parameters should not be revealed. Current approaches to privacy preservation normally propose methods that sacrifice exact convergence or increase communication overhead. We propose PrivOpt, an intrinsically private distributed optimization algorithm that converges exponentially fast without any convergence error or using extra communication channels. We show that when the number of the parameters of the local cost is greater than the dimension of the decision variable of the problem, no malicious agent, even if it has access to all transmitted-in and -out messages in the network, can obtain local cost parameters of other agents. As an application study, we show how our proposed PrivOpt algorithm can be used to solve an optimal resource allocation problem with the guarantees that the local cost parameters of all the agents stay private. 
    more » « less
  3. In the Multi-Agent Meeting problem (MAM), the task is to find a meeting location for multiple agents, as well as a path for each agent to that location. In this paper, we introduce MM*, a Multi-Directional Heuristic Search algorithm that finds the optimal meeting location under different cost functions. MM* generalizes the Meet in the Middle (MM) bidirectional search algorithm to the case of finding an optimal meeting location for multiple agents. Several admissible heuristics are proposed, and experiments demonstrate the benefits of MM*. 
    more » « less
  4. null (Ed.)
    Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system. 
    more » « less
  5. We consider a class of convex decentralized consensus optimization problems over connected multi-agent networks. Each agent in the network holds its local objective function privately, and can only communicate with its directly connected agents during the computation to find the minimizer of the sum of all objective functions. We propose a randomized incremental primal-dual method to solve this problem, where the dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. We provide comprehensive convergence analysis including convergence rates of the primal residual and consensus error of the proposed algorithm, and conduct numerical experiments to show its performance using both uniform sampling and important sampling as node selection strategy. 
    more » « less