skip to main content


Title: Co-Regulated Consensus of Cyber-Physical Resources in Multi-Agent Unmanned Aircraft Systems
Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system.  more » « less
Award ID(s):
1638099
NSF-PAR ID:
10205853
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Electronics
Volume:
8
Issue:
5
ISSN:
2079-9292
Page Range / eLocation ID:
569
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the development of sensing and communica- tion technologies in networked cyber-physical systems (CPSs), multi-agent reinforcement learning (MARL)-based methodolo- gies are integrated into the control process of physical systems and demonstrate prominent performance in a wide array of CPS domains, such as connected autonomous vehicles (CAVs). However, it remains challenging to mathematically characterize the improvement of the performance of CAVs with commu- nication and cooperation capability. When each individual autonomous vehicle is originally self-interest, we can not assume that all agents would cooperate naturally during the training process. In this work, we propose to reallocate the system’s total reward efficiently to motivate stable cooperation among autonomous vehicles. We formally define and quantify how to reallocate the system’s total reward to each agent under the proposed transferable utility game, such that communication- based cooperation among multi-agents increases the system’s total reward. We prove that Shapley value-based reward reallocation of MARL locates in the core if the transferable utility game is a convex game. Hence, the cooperation is stable and efficient and the agents should stay in the coalition or the cooperating group. We then propose a cooperative policy learning algorithm with Shapley value reward reallocation. In experiments, compared with several literature algorithms, we show the improvement of the mean episode system reward of CAV systems using our proposed algorithm. 
    more » « less
  2. We consider a class of convex decentralized consensus optimization problems over connected multi-agent networks. Each agent in the network holds its local objective function privately, and can only communicate with its directly connected agents during the computation to find the minimizer of the sum of all objective functions. We propose a randomized incremental primal-dual method to solve this problem, where the dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. We provide comprehensive convergence analysis including convergence rates of the primal residual and consensus error of the proposed algorithm, and conduct numerical experiments to show its performance using both uniform sampling and important sampling as node selection strategy. 
    more » « less
  3. In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality . In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus -based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus -based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning. 
    more » « less
  4. Characterizing computational demand of Cyber-Physical Systems (CPS) is critical for guaranteeing that multiple hard real-time tasks may be scheduled on shared resources without missing deadlines. In a CPS involving repetition such as industrial automation systems found in chemical process control or robotic manufacturing, sensors and actuators used as part of the industrial process may be conditionally enabled (and disabled) as a sequence of repeated steps is executed. In robotic manufacturing, for example, these steps may be the movement of a robotic arm through some trajectories followed by activation of end-effector sensors and actuators at the end of each completed motion. The conditional enabling of sensors and actuators produces a sequence of Monotonically Ascending Execution times (MAE) with lower WCET when the sensors are disabled and higher WCET when enabled. Since these systems may have several predefined steps to follow before repeating the entire sequence each unique step may result in several consecutive sequences of MAE. The repetition of these unique sequences of MAE result in a repeating WCET sequence. In the absence of an efficient demand characterization technique for repeating WCET sequences composed of subsequences with monotonically increasing execution time, this work proposes a new task model to describe the behavior of real-world systems which generate large repeating WCET sequences with subsequences of monotonically increasing execution times. In comparison to the most applicable current model, the Generalized Multiframe model (GMF), an empirically and theoretically faster method for characterizing the demand is provided. The demand characterization algorithm is evaluated through a case study of a robotic arm and simulation of 10,000 randomly generated tasks where, on average, the proposed approach is 231 and 179 times faster than the state-of-the-art in the case study and simulation respectively. 
    more » « less
  5. null (Ed.)
    In many scenarios, information must be disseminated over intermittently-connected environments when network infrastructure becomes unavailable. Example scenarios include disasters in which first responders need to send updates about their critical tasks. If such updates pertain to a shared data set (e.g., pins on a map), their consistent dissemination is important. We can achieve this through causal ordering and consensus. Popular consensus algorithms, such as Paxos and Raft, are most suited for connected environments with reliable links. While some work has been done on designing consensus algorithms for intermittently-connected environments, such as the One-Third Rule (OTR) algorithm, there is need to improve their efficiency and timely completion. We propose CoNICE, a framework to ensure consistent dissemination of updates among users in intermittently-connected, infrastructure-less environments. It achieves efficiency by exploiting hierarchical namespaces for faster convergence, and lower communication overhead. CoNICE provides three levels of consistency to users' views, namely replication, causality and agreement. It uses epidemic propagation to provide adequate replication ratios, and optimizes and extends Vector Clocks to provide causality. To ensure agreement, CoNICE extends basic OTR to support long-term fragmentation and critical decision invalidation scenarios. We integrate the multilevel consistency schema of CoNICE, with a naming schema that follows a topic hierarchy-based dissemination framework, to improve functionality and performance. Performing city-scale simulation experiments, we demonstrate that CoNICE is effective in achieving its consistency goals, and is efficient and scalable in the time for convergence and utilized network resources. 
    more » « less